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Abstract State-based formal methods [e.g. Event-B/
RODIN (Abrial in Modeling in Event-B—system and soft-
ware engineering. Cambridge University Press, Cambridge,
2010; Abrial et al. in Int J Softw Tools Technol Transf
(STTT) 12(6):447–466, 2010)] for critical system devel-
opment and verification are now well established, with
track records including tool support and industrial applica-
tions. The focus of proof-based verification, in particular, is
on safety properties. Liveness properties, which guarantee
eventual, or converging computations of some requirements,
are less well dealt with. Inductive reasoning about liveness
is not explicitly supported. Liveness proofs are often com-
plex and expensive, requiring high-skill levels on the part
of the verification engineer. Fairness-based temporal logic
approaches have been proposed to address this, e.g. TLA
Lamport (ACM Trans Program Lang Syst 16(3):872–923,
1994) and that of Manna and Pnueli (Temporal verification
of reactive systems—safety. Springer, New York, 1995). We
contribute to this technology need by proposing a fairness-
based method integrating temporal and first-order logic,
proof and tools for modelling and verification of safety and
liveness properties. The method is based on an integration
of Event-B and TLA. Building on our previous work (Méry
and Poppleton in Integrated formal methods, 10th interna-
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tional conference, IFM 2013, Turku, Finland, pp 208–222,
2013. doi:10.1007/978-3-642-38613-8_15), we present the
method via three example population protocols Angluin
et al. (Distrib Comput 18(4):235–253, 2006). These were
proposed as a theoretical framework for computability rea-
soning about Wireless Sensor Network and Mobile Ad-Hoc
Network algorithms. Our examples present typical live-
ness and convergence requirements. We prove convergence
results for the examples by integrated modelling and proof
with Event-B/RODIN and TLA. We exploit existing proof
rules, define and apply three new proof rules; soundness
proofs are also provided. During the process we observe
certain repeating patterns in the proofs. These are easily
identified and reused because of the explicit nature of the
reasoning.

Keywords Refinement · Formal method · Distributed
sytems · Verification · Liveness · Fairness

1 Introduction

Event-B/RODIN [7] is a leading, well-tooled formal method
for critical systems development. Event-B is a state-based
formal specification language in FOL, supported by the
rich RODIN toolkit of provers, animator, model checkers,
graphical modelling front-ends, and infrastructural support
for composition–decomposition in development. Functional
and safety verification is provided by automatically gener-
ated proof obligations (POs) for invariant preservation and
refinement.

Lamport’s temporal logic of actions (TLA) is a trace-
based language for specifying both the structure of an action
system and required properties of its behaviour: safety, live-
ness and fairness [38]. Its basis in temporal logic and a trace-
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based semantics makes specification of temporal properties
straightforward to specify. The supporting proof system is
well defined. There is a longstanding model-checker TLC
[53] and a more recent proof tool TLAPS [34].

We present an integrated framework for temporal and
first-order logic for modelling and verification of both safety
and liveness properties. Our objective is to extend the scope
of a refinement-based development method to prove liveness
properties under fairness [38] assumptions. As experimental
sandpit we choose the formal development of three simple
population protocols [12]. The interesting questions about
these protocols concern liveness and convergence properties
and to what extent we can specify, reason about and prove
such properties formally. A first-order scheme like Event-
B cannot explicitly support this; we apply Lamport’s TLA
for such reasoning, since it allows the specification of trace-
based properties.

The first two example protocols, the lights and the
dancers [17], were presented in [58]. The lights gave a sim-
ple illustration of the proposed method and revealed the
interplay of strong and weak fairness assumptions in prov-
ing convergence. The lights also showed how proof of a
compound leadsto property under weak and strong fairness
assumptions can be done first-order, e.g. by RODIN provers.
The second protocol, the dancers, was extended beyond its
source work [17] to give two stages of convergence. The sec-
ond stage required intricate reasoning; a new proof rule GF1
based on global fairness [30] was sketched.

Here we give a more considered history of the develop-
ment of the Event-B language, focussing on its capability
for verification of liveness properties. Since we précis the
fairness-based TLA, we give some background to fairness-
based approaches. We formalise our framework for verifi-
cation of safety and liveness in an integrated Event-B/TLA
framework. We define diagrammatic proof rules PP-SF1 and
PP-SF2 to capture styles of proof that arise in an example
addressing the leader election protocol. We then present the
lights with explicit liveness properties and proof through a
refinement development.

The dancers development is presented in the same for-
malised manner to make liveness properties and proof more
explicit. A diagrammatic representation of the case-split
proof, through two stages of convergence, is given. A sound-
ness proof for a new proof rule GF1 is given. A full proof of
the complex convergence stage is given in the “Appendix”.

The third protocol presented, self-stabilising leader elec-
tion [37], is for the first time modelled and verified in a
state-based formal method. It suggests a style of proof that
might characterise self-stabilising systems. Here we demon-
strate the utility of the diagrammatic proof rules PP-SF1 and
PP-SF2.

Population Protocols: The design of a WSN or MANET
is challenging, both functionally and in terms of quality

assurance; Yick et al. [67] is a thorough recent survey of
WSNs. Design requires demanding optimisation against,
e.g. node power availability, message latency, throughput,
per cent messages delivered, unpredictable node and com-
munication reliability. Verification, given unreliable hard-
ware and harsh operating environments, remains very chal-
lenging. From the perspective of Software Engineering, the
“code-and-fix” nature of WSN development was identified
[62]; in response the Software Engineering for Sensor Net-
work Applications (SESENA) workshop series of ICSE was
established in 2010.

A recent and relevant theoretical response to this need is
the population protocol (PP) [12,17]. It “aims to represent
sensor networks consisting of tiny computational devices
with sensing capabilities that follow some unpredictable and
uncontrollable mobility pattern” [65]. The PP is a model of
simple agents, passively mobile in the sense of Angluin et
al. [12], where an agent does not determine a priori who it
interacts with. A dynamic interaction graph models mobil-
ity, under control of some external adversarial scheduler.
The graph determines which pairs of agents are adjacent,
i.e. may interact at any given time. The agent is simple and
can be described with a finite-state machine. It has min-
imal storage, which is independent of network size—this
is the uniformity property of PP. An agent has no unique
identifier—the anonymity property. The third distinguishing
characteristic of PP within distributed systems is the inher-
ent nondeterminism of interaction between agents.

We consider a finite set V of agents with an irreflex-
ive relation E ⊆ V × V defining the interaction graph,
which specifies which agent pairs may interact. In the basic
PP model, each agent establishes an initial state by reading
a single input. Each agent produces an externally observ-
able output as a function of its state. After initialisation,
agents interact pairwise, atomically and instantaneously.
The choice of which pair to interact at any time is nonde-
terministic. During an interaction, each participating agent
will update its state and thus its output.

The basic population protocol over (V, E) is the tuple
(Q, X, I,Y, O, δ), where

– Q is the finite set of states for each agent
– X is a finite alphabet of inputs, and I : X → Q maps
each input to an initial state

– Y is the finite output alphabet, and O : Q → Y maps
each state to an output

– transition relation δ : Q × Q → Q × Q defines the
interaction of two agents

A configuration is a function C : V → Q giving the
state of each agent. We say that a configuration C leads to
a configuration C ′, i.e. C → C ′, when C moves through
some single δ-interaction between two agents to C ′. That is,
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for two interacting agents u, v, C ′ is precisely C updated
with {u �→ δ1(u, v), v �→ δ2(u, v)}. We consider a trace
of the PP to be the sequence of configurations Ci associ-
ated with some sequence of interactions. The aim is to prove
that the corresponding output trace O(Ci ) converges. Note
that the trace itself need not converge, but the output trace
must.

The interaction of any two agents is under a global fair-
ness assumption [30], which expresses that a trace T =
C0 → C1 → · · · is globally fair, when for every con-
figuration C and C ′ such that C → C ′, if C = Ci

for infinitely many i in T , then Ci+1 = C ′ for infi-
nitely many i . This globally fair interaction happens in the
complete interaction graph in the basic PP; this assump-
tion on the graph has been relaxed in subsequent work.
Existing work mostly makes stronger, probabilistic assump-
tions [13], e.g. in the basic model assuming that inter-
acting pairs are scheduled randomly, independently and
uniformly gives a conjugating automaton which converges
with probability 1.

Various extensions of the basic model, bringing it closer
to real-world requirements in various ways, have been
proposed: instantaneous two-way interaction is replaced
with one-way anonymous message-passing, immediate or
delayed delivery, recording of sent messages, and queu-
ing of incoming messages [13]. In a self-stabilising system
[14] the protocol acts on input streams, mimicking sensor
nodes.

Fairness, Scheduling and Methodology: In our work, the
nondeterministic interaction of a PP chosen by one or more
adversarial but fair schedulers is the focus. Chatzigian-
nakis et al. [33] have examined the performance of large
PPs in simulation experiments, using various fair scheduler
designs and interaction graph assumptions. This comple-
ments the mostly theoretical work to date and empha-
sises the importance of fairness and scheduling in this
domain.

In closed system modelling, the allocation of model ele-
ments to device versus environment is a key early stage.
For example, for the WSN node software developer, radio
transceiver, sensor and A2D circuits on the node are envi-
ronment elements.1 Following established rely/guarantee
practice [48] we make assumptions about the environment
and assertions about the devices in this setting; we must
demonstrate or prove these assertions.

There is a rich history of fairness and scheduling notions
in methods for modelling and reasoning about distributed
and concurrent systems. Apt and Olderog’s early proof-
theoretic approach [15,59] applied weak and strong fairness
for Dijkstra’s nondeterministic do-od programs. Lamport’s

1 We do not consider the hybrid interface of this discrete model to the
wireless radio environment.

TLA [50–52] uses fairness to prove liveness properties as
originally defined by Alpern and Schneider [10,11]. While
TLA allows a notion of refinement and provides intricate
rules for fairness refinement, this is not straightforward and
not much used.

UNITY [32] is a similar methodology, including refine-
ment and a programming notation based on action systems
[19] and a temporal logic-based specification language.
The goal was a method to derive concurrent/distributed
solutions, proving safety and liveness under implicit weak
fairness assigned to each action. A UNITY action is exe-
cuted under weak fairness assumption and is non-blocking.

The evolution of classical B [3] into Event-B was inspired
inter alia by CSP [44], action systems, DISCO [18,47],
TLA and Manna and Pnueli [54]. Event-B is a state tran-
sition language in FOL whose usual semantic model is the
labelled transition system (LTS). Its strength in verifica-
tion is in safety properties. The evolution from classical
B was motivated in part by the need to model and assure
certain liveness properties or “dynamic constraints” [8]. In
liveness, leadsto properties are key: P � Q means that
whenever P holds, Q is guaranteed to hold at some later
point. Leadsto properties were to be made syntactically
explicit in a MODALITIES clause: each modality would
implement a P � Q leadsto property as a loop struc-
ture naming participating events and generating associated
loop POs. In the eventual Event-B language the treatment of
liveness is more implicit; the proof system only has weak
support for liveness. A simple P � Q property can be
modelled by a new, skip-refining iterative event e that even-
tually terminates, having established the guard for event
f , which establishes Q. A VARIANT expression, which
must be proved to be reduced by all new events, encodes
the termination of such new events as a simple induction
proof. The deadlock freedom PO for a model—that the
guard of at least one event is always enabled—encodes
a weak fairness assumption over the disjunction of all
events.

Our approach is in the spirit of an earlier unifying model
[39] for different formal methods. In that work an example
showed the integration of a temporal specification plus live-
ness proof in TLA, with a refinement-based action systems
model in UNITY proving invariance, i.e. safety properties.
In a similar way we combine specification and proof in TLA
and Event-B. Since a TLA model specifies both the action
system and its required properties, we interpret the Event-B
model [16] as the action system and prove liveness under
fairness assumptions in TLA, using Event-B/RODIN in the
normal way for safety proof. Previous work on patterns for
refinement-based algorithm development [57] has also influ-
enced this work.

Event-B does not address fairness in any explicit way,
which is understandable in an action systems scheme with
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LTS but not trace semantics. The usual practice is to
assume that some scheduler external to the Event-B model
chooses fairly between enabled events at any time. To
encode progress, the scheduler’s hand is forced by restrict-
ing enablement of non-priority events with flags or counters.
While this is a reasonable informal approach based on mod-
elling heuristics to ensure progress, it is not a proof method.
Also, this approach is more questionable when applied to
environment components. Modelling control problems in
this manner [29] involves disabling a sensor event after
reading environment data until the control action is com-
pleted. While this approach is consistent with periodic
sensor reading at most once per processor execution cycle,
it relies on engineering judgement about whether the partial,
approximate view the controller has of the environment is
sufficiently accurate and safe.2

The implicit Event-B approach to progress and liveness
relies on heuristics and experience in such modelling and
design. Such expertise is only transferrable by study of
best-practice models and will be expensive to develop in
engineers. We propose an explicit method for progress and
liveness, based on classical TLA specification of liveness
and fairness requirements of the devices under design, and
fairness assumptions on the environment. Concrete schedul-
ing design can be undertaken at a suitable point and verified
to meet the device fairness requirements. Proof support is
available [34].

In contrast to related work, we make no language exten-
sions. In classical B, [41] encodes an LTL property, guar-
anteed by construction, as a Büchi automaton within the
B model. The incorporation of the property in this form
complicates verification. In the same spirit as the orig-
inal idea [8] for liveness modelling in Event-B, Hoang
and Abrial [43] extend the sequent calculus over new POs
to define liveness proof rules. New variant-based (thus,
implicitly inductive) POs encode notions of “convergence”
and “divergence”. Together with deadlock freedom (implic-
itly, weak fairness), these POs are assembled into liveness
proof rules for �� (always eventually), �� (eventually
always) and � (leadsto) properties. Building on implic-
itly encoded inductive and fairness logic, an apparently
complex proof system results. Illustrative future work will
be to compare a proved example in this method, with
ours.

Hoang and Abrial [43] extend the proof system, generat-
ing an implicit trace semantics. They exploit the sparseness
of the Event-B language and its basic set of POs which
makes it a flexible and extensible foundation for richer

2 Note that the more sophisticated modelling of the hybrid dis-
crete/continuous controller/environment interface offered by the
Hybrid Systems community is under active consideration by the Event-
B community [9,20–22].

semantic interpretations [42]. On the other hand, Hudon and
Hoang’s Unit-B [45] is a more ambitious language exten-
sion of Event-B inspired by UNITY. It gives a Dijkstra’s
computation calculus [35] semantics to Event-B and enables
fairness assumptions to be specified at event level. Each
event has both a coarse (weak fairness assumption) and
a fine schedule (strong fairness assumption). A liveness-
preserving refinement scheme is presented. This is effec-
tively a new language and proof system proposal with all the
associated development costs. Finally, Schneider et al. [64]
characterise a class of LTL properties that are preserved by
Event-B refinement.

In the next section we introduce the syntax, specifica-
tion and integrated proof scheme for TLA and Event-B. In
some detail we give a proof scheme for liveness properties
and their refinement; we prove a composite proof rule PP-
SF1 and outline its extended form as PP-SF2. Sections 3
and 4 then overview Event-B developments for two example
population protocols from the literature, respectively. Sec-
tion 3 gives the lights, a simple example protocol over a
dynamic interaction graph revealing a reusable proof pat-
tern. Section 4 gives the more complex dancers example,
extended from the literature, and proposes a new notion of
general fairness to prove convergence. A significant new
proof rule GF1 is defined and proved sound. Section 5
gives the leader election example. In this self-stabilising
system an elaboration of the proof pattern of Sect. 3 is
revealed; we apply the composite rules PP-SF1 and PP-SF2
and show how to address the proof of self-stabilisation. Sect.
6 concludes.

2 TLA and Event-B

Leslie Lamport’s TLA (Temporal Logic of Actions) [51]
is designed for the specification and verification of reactive
systems in terms of their actions and behaviours (traces).
It can be thought of as structured in four tiers [2]: (i) con-
stants and constant formulas—functions and predicates—
over these, (ii) state formulas for reasoning about states,
expressed over variables as well as constants, (iii) transi-
tion or action formulas for reasoning about (before-after)
pairs of states and (iv) temporal predicates for reason-
ing about behaviours, i.e. traces of states; these are con-
structed from the other tiers and certain temporal
operators.

An action formula expresses some fact or function about
a system transition between one state and its successor, as
made available by some system action. An action predi-
cate is very like a before–after predicate in Event-B. A
state formula is an action formula where either all flex-
ible variables are unprimed or all are primed. A state
predicate is true in a behaviour iff it is true in the first
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state of that behaviour. If F,G are temporal predicates,
then so are ¬F, F ∨ G, F ∧ G, F ⇒ G,�P,�P . The
latter two are temporal operators. We write �P—called
“always P”—to mean P is always true over a given
behaviour and define �P—called “eventually P”—to be
¬�¬P .

For action predicate A, state formula f (usually, a list of
state variables) we define [A] f (called “square A sub f”) to
be true for states s, t iff s�A ∨ f ′ = f �t , that is, if either
A defines a transition from s to t , or variables f remain
unchanged from s to t . Dually we define 〈A〉 f (called “angle
A sub f”) to be true for states s, t iff s�A∧ f ′ �= f �t , that is,
A defines a transition from s to t , and state f changes from
s to t .

This logic enables us to specify the state transition-based
behaviour of a system, as well as assert properties over that
behaviour, in one notation and logic. In general we wish to
specify systems in the form

Φ =̂ I ni tΦ ∧ �[Next] f ∧ WF f (N1) ∧ SF f (N2)

where Next =̂ N1 ∨ N2 ∨ ... is the disjunction of all system
actions, i.e. the “next” transition, denoting progress subject
to possible stuttering. Stuttering is required to allow us to
specify and prove refinements. The WF and SF constraints
are the weak and strong fairness constraints required by the
system actions in order to progress.

Consideration of whether an action eventually stabilises
to always enabled or not determines the choice of a weak
or strong fairness requirement in specification. We say that
action A is weakly fair if, provided it is eventually always
enabled, it is then guaranteed to fire infinitely often. Alter-
natively, it may be infinitely often disabled and never fire.
A is strongly fair if, provided it is infinitely often enabled,
it is then guaranteed to fire infinitely often. Alternatively,
it may be eventually always disabled and never fire. With
the weaker antecedent in its implicative form, SF is the
stronger fairness property. General fairness GF is defined as
a stronger form of strong fairness. Figure 1 gives the fairness
properties.

Finally, the leadsto operator: P � Q =̂ �(P ⇒ �Q)

states that whenever P holds then Q is guaranteed to hold at
some later time . . . eventually.

Fig. 1 Fairness properties in TLA

Figure 2 presents some of Lamport’s proof rules for sim-
ple TLA [51] and three lemmas we require—IMPLICATION,
REWRITING and SIMPLIFICATION. This list is semanti-
cally complete for liveness proof in TLA. TRANSITIVITY
and CONFLUENCE are well-known rules for manipulating
leadsto properties. LATTICE is an induction rule. Provided
Hc leads to either the goal G or Hd for some d strictly
smaller than c and then the induction is guaranteed to con-
verge to G. WF1 gives the conditions under which weak
fairness of action A is enough to guarantee that P � Q. A
stuttering progress step produces either P or Q in the next
state, nonstuttering action 〈A〉 f takes the inductive step to
produce Q, and under P , inductive action 〈A〉 f is always
enabled. SF1 is the strong fairness equivalent to prove P �
Q: a strong fairness assumption on A is made and the same
first two conditions hold as in WF1. A third condition elab-
orated with a fairness assumption �F ensures that 〈A〉 f is
eventually—rather than always—enabled.

Liveness properties under fairness assumptions require
the application of one of the two rules WF1 and SF1
in Fig. 2. We aim to facilitate the derivation of liveness
properties using these rules, when considering population
protocols. While constructing proofs, we identify specific
patterns for improving the proof process and for helping
the modeller to identify what fairness assumption should
be assigned to each event. In the next subsection, we intro-
duce two proof rules in diagrammatic form, to clarify their
intended usage. We will apply these rules later, in the exam-
ple sections.

2.1 Two practical proof rules as diagrams

The two rules WF1 and SF1 may be annotated by spe-
cial diagrams corresponding to specific patterns of use of
these rules. We first specialise the SF1 rule as follows. We
formalise it as a new proof rule PP-SF1, using the rules
of Fig. 2 and give a diagrammatic form in Fig. 3. We
assume the following: (i) P1, P2 and Q are three asser-
tions of state properties of a system specified by N and (ii)
N ≡ α ∨ β ∨γ ∨ δ ∨ ε where α, β, γ, δ, ε are modelling
the possible events modifying state variables x .

– PROVE: �[N ]x ∧ SFx (γ ) ∧ WFx (α) ⇒ (P � Q)
PROOF:
�[N ]x ∧ WFx (α) ⇒ P1 � P2 1 ... H1-3, WF1

�[N ]x ∧ WFx (α) ⇒ P � P2 2 ... 1, CONFLUENCE

�P ∧ �[N ]x ∧ WFx (α) ⇒ �P2 3 ... 2, REWRITING

�P ∧ �[N ]x ∧ WFx (α) ⇒ �Enabled〈γ 〉x 4 ... 3, H3b, temporal logic

�[N ]x ∧ SFx (γ ) ∧ WFx (α) ⇒ (P � Q) 5 ... 4, H4-5, SF1 
�

Implicitly we start with a WF1 proof (H1-3): since P1 is
the starting state, weak fairness of α suffices to show P1 �
P2. On the other hand, β returns P2 to P1, disabling γ . The
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Fig. 2 Main rules for liveness
properties in TLA

Fig. 3 PP-SF1 proof rule

third hypothesis of SF1 (proof line 4), guaranteeing eventual
enablement of γ , is derived from P � P2 and H3b. This PP-
SF1 proof pattern simplifies the proofs and shows the role of
α in proving convergence.

Now we consider another possible pattern of predicates
related through events and we define the PP-SF2 rule as fol-
lows.
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• PROVE: �[N ]x ∧ WFx (γ ) ∧ WFx (δ) ∧ SFx (α) ∧
WFx (β) ⇒ (P � R)

PROOF:

1 P2 ∧ [N ]x ⇒ (P ′
2 ∨ P ′

1 ∨ Q′
2)

H1b
2 P2 ∧ 〈N ∧ γ 〉x ⇒ P ′

1
H4a

3 P2 ∧ 〈N ∧ β〉x ⇒ Q′
2

H4b
4 P2 ⇒ Enabled〈γ 〉x

H3c
5 P2 ⇒ Enabled〈β〉x

H3b
6 �[N ]x ∧ WFx (γ ) ∧ WFx (β) ⇒ P2 � (P1 ∨ Q2)

1,2,3,4,5 with WF1
7 Q2 ∧ [N ]x ⇒ (Q′

2 ∨ Q′
1)

H2c
8 Q2 ⇒ Enabled〈δ〉x

H3d
9 Q2 ∧ 〈N ∧ δ〉x ⇒ Q′

1
H4c

10 �[N ]x ∧ WFx (δ) ⇒ (Q2 � Q1)

7,8,9 with WF1
11 (P1 ∨ P2) ∧ [N ]x ⇒ (P ′

1 ∨ P ′
2 ∨ Q′

1 ∨ Q′
2)

H1a, H1b + REW RIT I NG
12 (P1 ∨ P2) ∧ 〈N ∧ α〉x ⇒ Q′

1
H2a + REW RIT I NG

13 (P1 ∨ P2) ∧ 〈N ∧ α〉x ⇒ (Q′
1 ∨ Q′

2)

LOGIC AL RULE
14 �(P1 ∨ P2)∧�[N ]x∧SFx (α) ⇒ �Enabled〈α〉x

T EMPORAL DERIV AT I ON
15 �[N ]x ∧ SFx (α) ⇒ (P1 ∨ P2) � (Q1 ∨ Q2)

11,12,13,14 + SF

16 �[N ]x ∧ SFx (α) ∧ WFx (β) ∧ WFx (γ ) ∧ WFx (δ)
⇒(P1 ∨ P2 ∨ Q2) � Q1

6,10,15 + REWRITING
17 �(Q1 ∨ Q2) ∧ [N ]x ⇒ (Q′

1 ∨ Q′
2 ∨ R′)

H2c, H4c, H5 + REW RIT I NG
18 (Q1 ∨ Q2) ∧ 〈N ∧ g〉x ⇒ R′

H5 + REW RIT I NG
19 �(Q1 ∨ Q2) ∧ �[N ]x ∧ SFx (g) ⇒ �Enabled〈g〉x

SFproperties
20 �[N ]x ∧ SFx (g) ⇒ ((Q1 ∨ Q2) � R)

17, 18, 19 + SF
21 �[N ]x ∧ SFx (g) ∧ SFx (α) ∧ WFx (δ) ∧ WFx (γ )

∧WFx (β) ⇒ (P � R)16,20 
�

This rule will be applied in Sect. 5.4; its proof is similar
to that of PP-SF1. In fact, it emerged while we were prov-
ing the leader election protocol. The choice of the fairness
assumption is due to the possible activation of e which is
delaying the convergence. The patterns are a way to drive
the development of protocols because one can introduce
phases in the development. One can also think on a general
result for helping users to derive proofs of liveness proper-
ties using fairness assumptions which may be very exotic
when reading protocol descriptions.

2.2 Structures for EVENT B models

Event-B is designed for long-running reactive hardware/
software systems that respond to stimuli from user and/or
environment. In this set-theoretic language in FOL, guarded
events provide state transition behaviour. The usual semantic
model is the LTS. The two syntactic units of structur-
ing are the static context and the dynamic machine. The
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context is the static part of the model, comprising sets, con-
stants, axioms and any theorems that must be derived from
those axioms. The machine is the dynamic part, comprising
dynamic variables and the events that update them. Safety
properties are expressed as either invariants or theorems.
Every machine sees at least one context.

An event e acting on (a list of) state variables v, subject
to enabling guard over local variable(s) t and state-updating
action, has the following syntax and semantics. We call the
latter a before–after predicate:

e =̂ ANY t WHERE Q(t, v) THEN v := F(t, v) END

BA(e)(v, v′) =̂ ∃t · (Q(t, v) ∧ v′ = F(t, v))

This defines a t-indexed nondeterministic choice between
those transitions v′ = F(t, v) for which Q(t, v) is true. t can
be interpreted as either an input or an output to the event.

An event works in a model with constants c and sets s
subject to axioms P(s, c) and an invariant I (s, c, v). Con-
sistency POs require that events are well-defined, feasible
and maintain invariants. The term refinement is overloaded,
referring both to the process of transforming models and
to the more concrete model which refines the abstract one.
When model N (w) refines M(v), it contains a refinement
relation, or “gluing invariant” J (s, c, v, w). New events may
be introduced in refinement to act on new variables, effec-
tively refining stuttering steps (called “skip” in Event-B).
The refinement POs enforce the standard forward simu-
lation refinement rule [4] that every concrete step of a
refining event reestablishes the gluing invariant subject to
some corresponding step of the abstract refined event, or
skip.

In this work, the modelling process deals with various
languages, as seen by considering the triptych of Bjo-
erner [24–27]: D,S −→ R. Here, the domain D deals
with properties, axioms, sets, constants, functions, relations
and theories. The system model S expresses a model or a
refinement-based chain of models of the system. Finally, R
expresses requirements for the system to be designed.

2.3 Contexts

The first structure is called a context (D in Fig. 4), and it
defines sets, constants, axioms and theorems derivable from
those axioms. The abstract contextAD is a previous context
that has already been defined, and it is seen by the current
contextD. A context is validated when sets S1, . . . , Sn , con-
stantsC1, . . . ,Cm and axioms ax1, . . . , axp are well formed
and when all theorems th1, . . . , thq are proved.

A context clearly states the static properties of the (sys-
tem) model under construction. The SEES construct enables
re-use by extending a previously defined context.

The proof process is based on the management of
sequents, with an associated environment for proof called
Γ (D). The proof environment includes axioms, properties
and theorems already proved. An environment is initially
provided, but the intention is to add new theorems. This
means that we intend to prove the following properties in
the sequent calculus style:

For any j in {1..q}, Γ (D) � th j : Q j (S1, . . . Sn,C1,

. . . ,Cm)

Theorems for the context are proved using the RODIN
tool, but it is clear that the process for constructing the
domain D is crucial to modelling the system, from consid-

Fig. 4 Context and machine
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eration of the triptych of Bjoerner [24–27] and variations of
this methodology.

2.4 Machines

A machine (see Fig. 4) is either basic or a refinement of a
more abstract machine. Amachine models a state via a list of
variables x that are assumed to be modifiable by events listed
in the machine. In this work we distinguish between invari-
ant assertions, maintained by all events and safety properties
which must be proved as theorems on the invariants. The
invariant is a conjunction of logical statements called I j .
Proof obligations are given in the last section, and they are
generated and checkable by the RODIN framework. The val-
idation of the machine M leads to the validation of the safety
and invariance properties.

We can obtain a variation of the triptych (Γ (D, M) is an
associated environment for proof) as follows:

– For any j in {1..r},
Γ (D, M) � BA(I ni t)(x ′) ⇒ I j (x ′, S1, . . . Sn,C1,

. . . ,Cm)

– For any j in {1..r}, for any event e of M ,

Γ (D, M) �
⎛

⎜

⎝

(

∧

j∈{1..r}
I j (x, S1, . . . Sn ,C1, . . . ,Cm)

)

∧ BA(e)(x, x ′)

⇒ I j (x ′, S1, . . . Sn ,C1, . . . ,Cm)

⎞

⎟

⎠

– For any k in {1..s},

Γ (D, M) �
⎛

⎜

⎝

(

∧

j∈{1..r}
I j (x, S1, . . . Sn,C1, . . . ,Cm)

)

⇒ SAFEk(x, S1, . . . Sn,C1, . . . ,Cm)

⎞

⎟

⎠

Using temporal operators for expressing the safety and
invariant properties, we summarise the requirements
expressed by the machine M as follows:

D, M −→ �

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(

∧

j∈{1..r}
I j (x, S1, . . . Sn,C1, . . . ,Cm)

)

(

∧

k∈{1..s}
SAFEk(x, S1, . . . Sn,C1, . . . ,Cm)

)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

2.5 System specification

We have shown that requirementsR are first expressed using
the always temporal operator. To specify total correctness
properties, we should extend the scope of the requirements
language by adding eventuality properties. Eventuality prop-
erties will be defined in the next section and will be specific
to our methodology.

The definition of the specification of traces is defined as
follows:

Definition 1 Let M be an EVENT B machine and D a con-
text seen by M . Let x be the list of variables of M , let E be
the set of events of M , and let I ni t (x) be the initialisation
event in M . The temporal framework of M over D is defined
by the TLA specification denoted:
S pec(M) =̂ BA(Init)(x)∧�[Next]x∧FAIR, whereNext ≡
∃e ∈ E .BA(e)(x, x ′) and FAIR defines the fairness assump-
tions.

Following Lamport [51,52], the specification S pec(M)

is valid for the set of infinite traces simulating M with
respect to the events of M . S pec(M) is thus defined by
the initial conditions, the next relation and fairness con-
straints. In practice we have to discover the weakest fairness
assumptions, denoted FAIR(M), that allow us to derive
the required liveness properties. These fairness assumptions
emerge from the proof rules applied and are expressed in
terms of the temporal operators of TLA, namely WF and
SF . FAIR(M) is thus a combination of fairness operators
over events of M . Liveness properties for M are, de facto,
defined in TLA as follows: M satisfies P � Q, when
Γ (M) � S pec(M) �⇒ (P � Q). When deriv-
ing proof of S pec(M) �⇒ (P � Q), we apply the
right introduction rule of the implication and then we elim-
inate the conjunctive connective in the left part of the �
symbol. Thus Γ (M) will be increased by fairness assump-
tions and we can use an alternative form for expressing the
initial sequent: Γ (M) is the proof context of M . An alterna-
tive approach to liveness properties is to use the wp-based
approach for defining the liveness properties under weak
fairness [32,55,56]. Next, we have to extend the scope of
the Event-B refinement by providing conditions to maintain
liveness properties.

2.6 Liveness-preserving refinement

Sections 2.3 and 2.4 defined the POs for the machines and
contexts in the proof landscape of the development shown
in Fig. 5. This figure gives the relationships amongst the dif-
ferent structures of contexts, machines, temporal properties.
Internal consistency of contexts and machines is defined
by these POs. These POs and the relationships SEES and
EXTENDS are defined in the Event-B modelling language
and implemented by the RODIN toolkit.

We say that machine M(y) refines machine AM(x)
according to the Event-B refinement relationship REFINES
in Fig. 5. This is expressed in the gluing invariant J (x, y)
which may include new constraints on y. Safety properties
on y are also expressible as per Sect. 2.4. For each event
ae(x) in AM , there exists an event ce(y) in M which refines
and preserves its externally visible behaviour. The associ-
ated POs are:
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Fig. 5 Summary of the
refinement methodology

– BA(I ni tc)(y′) ⇒ ∃x ′.BA(I ni ta)(x) ∧ J (x ′, y′)
– INV(x) ∧ J(x, y) ∧ BA(ce)(y, y′) ⇒ ∃x ′.(BA(ae)

(x, x ′) ∧ J(x ′, y′))

The methodology is sketched by the diagram of Fig. 5.
The given models are AD and AM with fairness assump-
tions and liveness requirements FAIR(AM) and Φa . The
refinement step is achieved by defining the list of liveness
properties Φc so that Φa can be derived from Φc using infer-
ence rules for leadsto properties. Then one defines the new
Event-B model M. This last point may be demanding, since
one should also define carefully how fairness is preserved
by the new events.

The relationship LIVE expresses the following proper-
ties:

– For any liveness property P � Q of Φa : Γ (AD, AM),

S pec(AM) � P � Q.
– For any liveness property P � Q of Φc: Γ (D, M),

S pec(M) � P � Q

Finally, the relationship REF is stating that any liveness
property P � Q of Φa is derivable from Φc and M . We can
rewrite this condition as follows:

∀P, Q.(P � Q ∈ Φa)

�⇒ (Γ (D, M),S pec(M),Φc � (P � Q)) (1)

The process of refinement REF is driven by the deriva-
tion of abstract liveness properties from concrete models
and it is based on the use of inference rules for deriving
liveness properties expressed as leadsto expressions. The
meaning of REF is supported by the deduction relation of
the liveness properties using the proof system of TLA. At
this point, we have to indicate that the TLA [51] refine-
ment is defined by the logical relationship S pec(M) ⇒
S pec(AM): each concrete trace is an abstract trace up to
stuttering steps. In fact, when considering the refinement
process, the list of POs states a necessary condition for infer-
ring the refinement relationship. It means that the objective
is to preserve a list of safety and liveness properties and we
face a major problem, when trying to use an inclusion of
traces. This strong constraint, namely the trace inclusion up
to stuttering, can be weakened and our proof-directed refine-
ment follows this simple idea.

However, our approach to the refinement of liveness
properties is intended to mimic Event-B, where refinement
of AM by M is checked by discharging a list of POs.
The relationship REFINES in Fig. 5 denotes our reuse,
for free, of POs generated by Event-B/RODIN modelling
and refinement; this guarantees invariant and safety prop-
erty preservation through refinement. We reduce liveness
refinement checking to a list of liveness POs. In the con-
text of liveness properties, Abadi and Lamport [1] introduce
the notion of refinement mapping to relate two specifica-
tions. Their main result proposition 1 concerns a necessary
condition for inferring the implementation of a specifi-
cation S2 by a specification S1. A specification S is a
four-tuple (Σ, F, N , L) where (Σ, F, N ) is a state machine
over state space Σ , initial states F ⊆ Σ and transi-
tion relation N . The notion of property induced by S is
defined to be the set of S-behaviours closed under stutter-
ing, denotedΣ and L is aΣ-property and expresses liveness
properties which are required and which are restricting
the set of behaviours. In our case, the state machine is
an Event-B machine and L is expressed using fairness
assumptions FAIR(M) which restrict traces. The imple-
ments relationship is defined as follows: a specification S1
implements a specification S2 if, and only if, the exter-
nally visible property induced by S1 is a subset of the
externally visible property induced by S2. In our case,
the implements relationship is called refinement. Conse-
quently, when we refine, we define a refinement mapping
f : Σ1 → Σ2 based on the following verification
conditions:

1. The refinement mapping preserves the externally visi-
ble state component: a consequence of the refinement of
each event e of S2 by an event of S1.

2. Initial states of S1 are mapped under f to initial states of
S2

3. For each event e1 of S1, e1 refines some e2 of S2 or is a
stuttering step in S2, thus under f , N1 ⇒ N2

4. f (L1) ⊆ L2

Under the existence of a refinement mapping, the specifi-
cation S1 implements S2, which means that the traces of S1
are, up to stuttering, traces of S2.

Next we express more precisely what we mean by the
refinement REF of liveness-extended Event-B models as per
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Fig. 6 Refinement methodology of Abadi and Lamport

Fig. 5. This extended meaning of refinement states that the
traces of the refinement model are included in the set of
traces of the abstract model according to the definition of
Abadi and Lamport [1] (Fig. 6).

Considering the liveness part of Fig. 5 we recall that the
meaning of the LIVE arrows in their respective proof envi-
ronments is S pec(AM) � Φa and S pec(M) � Φc. Thus
Abadi and Lamport suggest the following approach (called
A1):

1. Development of a concrete Event-B machine driven by
concrete liveness properties from abstract AM and Φa :
M and Φc

2. Verifying that AM satisfies abstract liveness properties:
S pec(AM) � Φa

3. Stating the concrete fairness assumptions FAIR(M)

4. Verifying that M satisfies concrete liveness properties:
S pec(M) � Φc

5. Verifying that FAIR(M) ⇒ FAIR(AM)

6. Verifying that S pec(M) ⇒ S pec(AM): we must find
a refinement mapping. Thus we have for free that
S pec(M) ⇒ Φa , i.e. refinement of liveness

From the theorem of Abadi and Lamport, we derive trace
refinement Spec(M) ⇒ Spec(AM). In practice, however, it
may be difficult to prove these strong refinement conditions.
We propose a second possible proof approach to relate the
two models but we do not prove that the two sets of condi-
tions are equivalent. In the second approach (called A2), we
establish the following steps:

1. Development of a concrete Event-B machine driven by
concrete liveness properties from abstract AM and Φa :
M and Φc

2. Stating the concrete fairness assumptions FAIR(M)

3. Verifying that M satisfies concrete liveness properties:
S pec(M) � Φc

4. Verifying that S pec(M),Φc � Φa
3. Thus we must

prove refinement of liveness. But we get for free that
Φa , i.e. we do not need to prove S pec(AM) � Φa

When these conditions are checked, it means that we do
not have to prove that the abstract liveness properties are

3 We will write Φc REF Φa to abbreviate this.

derived from the abstract model, since they have already
been derived in step 4. We are driven by the inference rules
and we design the concrete Event-B machine to have the
concrete liveness properties required to derive the abstract
liveness properties (Φc � Φa).

However, when it is possible and when we are able to
discharge the refinement of fairness assumptions, we can
simply apply the approach 1, and the approach 2 follows
implicitly. We summarise our refinement verification as fol-
lows assuming that the machine M refines AM with respect
to Event-B:

– Case 1 (A1): we prove that S pec(AM) � Φa , FAIR(M)

⇒FAIR(AM), that S pec(M) ⇒ S pec(AM) and that
S pec(M) � Φc. It follows that S pec(M) � Φa .

– Case 2 (A2): we prove that S pec(M) � Φc and
S pec(M),Φc � Φa . It follows that S pec(M) satisfies
Φa .

3 Red and green lights

We present the lights [17], a simple population protocol
modelled and refined in Event-B, in order to demonstrate the
temporal style of reasoning about convergence. We empha-
sise the explicit temporal proof of convergence through the
liveness properties that define and support such conver-
gence. Each lower-level proof step—the hypotheses used
in the temporal proof rules—is easily coded and proved
in RODIN; we indicate any exceptions to this. Figure 7
gives a schematic structure for this partial refinement-based
development satisfying temporal properties under defined
fairness assumptions.

Network nodes l are coloured red or green (coded l ∈
V → COLOURS where COLOURS = {green, red}).
Node interaction is defined for any two adjacent red nodes—
i.e. connected by the interaction graph—when one node
turns green. The protocol terminates when only one red
remains.

Initially, the lights are modelled over a complete inter-
action graph. The first model PPM0 specifies an abstract,
nondeterministic “one-shot” convergence, simply proved
with WF1. The first refinement PPM1 describes pairwise
interaction between red nodes—event iact—as an induc-
tive process. The inductive leadsto property is proved by
WF1. The refinement of the liveness property, by its decom-
position into the underlying induction, is trivial by LAT-
TICE. The second refinement PPM2 introduces a dynamic
interaction graph through angel and demon events. This
breaks the always enabled interaction. Thus the induc-
tion must be reproved using SF1 and a lemma, assum-
ing weak fairness of the angel, that re-enables interac-
tion.
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Fig. 7 Development scheme

3.1 Model PPM0

In this first, most abstract Event-B model PPM0, the graph
is complete—every node is connected to every other. Nodes
are initialised to an arbitrary initial configuration with at
least one red node. As per Event-B convention, the first
model specifies the required convergence property as a one-
shot transition; conv0 nondeterministically selects one red
node and sets all others to green. Apart from initialisation
the model has two events conv0 and iact0, each modifying
one variable l ∈ V → {red, green}. iact0 is an Event-B
artefact to ease refinement and will not affect the liveness
proof.4

EVENT conv0
ANY i
WHERE i ∈ V ∧ l(i) = red
THEN l :| l′ ∈ V → {red, green}

∧ l′−1[{red}] = {i}
END

EVENT iact0 anticipated
ANY l
THEN l :| l′ ∈ V → {red, green}

∧ l′ � {red} ⊆ l � {red}
END

We illustrate the proof scheme with this initial trivial live-
ness proof. Here and in the refinements, bearing in mind
the limitations of the Event-B provers over the arithmetic of
the naturals, we express cardinalities in terms of fixed-size
injections.

– FAIR(PPM0) defines the fairness assumption over the
event conv0: WF l(conv0)

– Φ0
de f= (l ∈ V → COLOURS ∧ l−1[{red}] �= ∅) �

(∃ f. f ∈ 1 .. 1 �� l−1[{red}])
– We define the invariant for this model:

I nvPPM0 =̂ l ∈ V → COLOURS ∧ l−1[{red}] �= ∅

4 iact0 “anticipates” the interaction in the subsequent refinement
PPM1 by allowing maximal nondeterministic change in l under the
constraint of the invariant and the initial configuration cl. This provides
a vehicle against which the behaviour of “anticipated” interaction event
iact1 on l can simulate defined behaviour in PPM0. It removes the need
for a duplicate variable for l in a data refinement.

– Φ0 is proved by Lamport’s WF1 rule; we list the WF1
hypotheses derived from PPM0:

� For each event e (here, just one event e = conv0) of
PPM0,
⎛

⎝

(

I nvPPM0

∧¬(∃ f. f ∈ 1 .. 1 �� l−1[{red}])

)

∧
(

BA(e)(l, l ′)

∨ l ′ = l

)

⇒ (

I nv′
PPM0

∨ ∃ f. f ∈ 1 .. 1 �� l ′−1[{red}] )

⎞

⎠

�
⎛

⎜

⎝

(

I nvPPM0 ∧¬(∃ f. f ∈1 .. 1 �� l−1[{red}]) )

∧BA(conv0)(l, l ′)

⇒ ∃ f. f ∈ 1 .. 1 �� l ′−1[{red}]

⎞

⎟

⎠

�
(

I nvPPM0 ∧ ¬(∃ f. f ∈ 1 .. 1 �� l−1[{red}]) )

⇒ ENABLED 〈conv0〉l

3.2 Model PPM1

In refinement PPM1 new event iact1 pairwise switches
one red node of an adjacent red pair to green. Event
conv1—guarded by convergence to a single red node—
refines conv0. It skips, simply observing that convergence
has taken place. Event-B refinement allows such strength-
ening of guards, as long as the overall system guard is
maintained; there are associated POs.

EVENT conv1
REFINES conv0
ANY i
WHERE
i ∈ V ∧ l−1[{red}] = {i}

END

EVENT iact1 convergent
ANY i j
WHERE
i ∈ V ∧ j ∈ V ∧ i �= j ∧ l(i) = red ∧ l( j) = red

THEN l(i) := green
END

VARIANT l � {red}

Convergence is proved straightforwardly using the WF1
fairness and LATTICE induction proof rules. In PPM1, it
is obvious that each interaction iact1 reduces the problem
and that l � {red} is a suitable set-valued inductive variant
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expression5. Using TLA we can be more explicit about the
inductive process of convergence than we can in Event-B:

– FAIR(PPM1) defines the fairness assumptions over
events conv1 and iact1:
WF l(iact1) ∧ WF l(conv1)

– We define the invariant for this machine PPM1:
I nvPPM1 =̂ I nvPPM0 ≡ l ∈ V → COLOURS ∧
l−1[{red}] �= ∅

– We define the inductive assumptions:
∀n.n ∈ 0..card(V ) − 1 ⇒ R(n) =̂ ∃ f. f ∈ 1 .. (n +
1) �� l−1[{red}]

– The new liveness property to check is defined:

Φ1
de f= [∀n ∈ 0..card(V ) − 1 · I nvPPM1 ∧ R(n + 1)�R(n)]

– Φ1 REF Φ0 is a simple induction proof by the LATTICE
rule applied to the assumptions R(n)

– We now prove Φ1 using the WF1 rule, assuming WF l

(iact1), and deriving the hypotheses from the machine
PPM1 as before:

� For each event e of PPM1,
I nvPPM1 ∧ R(n + 1) ∧ (BA(e)(l, l ′) ∨ l ′ = l)
⇒ I nv′

PPM1
∧ (R′(n + 1) ∨ R′(n))� I nvPPM1 ∧ R(n + 1) ∧ BA(iact1)(l, l ′)

⇒ I nv′
PPM1

∧ R′(n)� I nvPPM1 ∧ R(n + 1) ⇒ ENABLED 〈iact1〉l

We see that liveness properties provide the guidelines for
the refinement REF. The weak fairness assumption on iact1
is derived from the liveness proof WF1 of the induction step
Φ1. Note that we have proved convergence of iact1 to R(0),
i.e. a single red node. Following Event-B convention, this
convergence is observed by a termination event: conv1. For
simplicity here conv1 skips; usually it would set a termina-
tion flag, say end := T RUE . A further trivial WF1 liveness
proof—assuming WF l(conv1)—is required to prove that
I nvPPM1 ∧ R(0) � end = T RUE .

3.3 Model PPM2

In refinement PPM2 we add a new variable c ∈ V ↔ V
to model the dynamically connected graph, initialised arbi-
trarily. The iact2 guard is refined, allowing only connected
nodes to interact. The environment is modelled by two new
events: a daemon event models, e.g. loss of radio connec-
tivity or node failure by arbitrary reassignment of network
connectivity and angel event models the contribution of the
environment to liveness, e.g. through improvement in radio

5 Keyword convergent for iact1 generates an inductive PO requiring
this variant to be reduced by the event.

signal quality, or intervention of a support team, by adding
a new link between two red nodes.

EVENT daemon
BEGIN

c :∈ {r |r : P(V × V )

∧ r ∩ id = ∅}
END

EVENT angel
ANY i j
WHERE
i ∈ V ∧ j ∈ V ∧ i �= j
l(i) = red ∧ l( j) = red
i �→ j /∈ c

THEN
c := c ∪ {i �→ j})

END

EVENT iact2
ANY i j
WHERE
i ∈ V ∧ j ∈ V ∧ i �= j
l(i) = red ∧ l( j) = red
i �→ j ∈ c

THEN l(i) := green
END

VARIANT l � {red}

The simple angel-daemon model of the environment’s
dynamic disruption of the network is essentially nondeter-
ministic; an implicit variant such as in PPM1 is not available.
The variant-based convergence proof required by Event-
B effectively forces us to schedule the environment here
explicitly, perhaps designing in some counter or time bound
on which to base a variant. This is a too concrete view of
scheduling, and TLA allows more flexible and abstract rea-
soning about scheduling and convergence. Note that iact2 is
no longer always enabled since two reds may not be con-
nected at a given time. It may be infinitely often disabled
and thus needs a strong fairness assumption. Subject to the
following definitions, we will apply SF1 and LATTICE to
prove liveness Φ20—i.e. Φ1 over refined traces—for this
refinement. In this proof we will reveal a further liveness
property Φ21 required as a lemma.

– FAIR(PPM2) defines the fairness assumptions over the
events:
SF l,c(iact2) ∧ WF l,c(conv2) ∧ WF l,c(angel) ∧
WF l,c(daemon).

– Invariant I nvPPM2

=̂
(

l ∈ V → COLOURS ∧ l−1[{red}] �= ∅

∧ c ∈ V ↔ V ∧ c ∩ id = ∅

)

– The inductive liveness property must now be reproved
as Φ20, for infinitely often disabled iact2. The need for
lemma Φ21 emerges from the proof of Φ20:

– Φ20
de f= [∀n ∈ 0..card(V ) − 1 · I nvPPM2 ∧ R(n+

1) � R(n)]

– Φ21
de f= ∀n ∈ 0..card(V ) − 1 · I nvPPM2 ∧ R(n +

1) � Enabled〈iact2〉l
– Φ20 is proved by rules SF1, REWRITING and lemma

Φ21. Φ21 is proved by WF1. {Φ20, Φ21}REF Φ1 fol-
lows.
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PROVE: Φ20 =̂ ∀n ∈ 0..card(V )−1 · I nvPPM2 ∧ R(n+
1) � R(n)

APPLY: Rule SF1.

� PROVE: For each event e of PPM2,
I nvPPM2 ∧ R(n + 1) ∧ (BA(e)(l, c, l ′, c′) ∨
(l ′ = l ∧ c′ = c))
⇒ I nv′

PPM2
∧ (R′(n + 1) ∨ R′(n))� PROVE: I nvPPM2 ∧ R(n + 1) ∧ BA(iact2)(l, l ′) ⇒

I nv′
PPM2

∧ R′(n)� PROVE: �(I nvPPM2 ∧ R(n + 1)) ∧ �[N ]l,c ∧WF l,c

(angel)
⇒ �ENABLED 〈iact2〉l

PROOF: lemma Φ21 to follow, REWRITING 
�
Note that the state variable subscripts for the action for-

mulae constituting the above hypotheses indicate which
state variables are in frame. For example, iact2 only acts
on l, whereas �[N ] acts on l, c. The first two hypotheses
of SF1 are proved in first-order logic, similarly to the WF1
proof of PPM1.

The third hypothesis is a formula in temporal logic not
directly expressible in Event-B, establishing the eventual
enablement of iact2 under weak fairness of the angel. In
PPM2 the environment’s dynamic effect on the network
is modelled by the daemon and—helped by the support
team—the angel. We assume the angel is always enabled,
and thus a weak fairness assumption suffices to ensure it acts
infinitely often. We require the following lemma:

– PROVE: Φ21 =̂ ∀n ∈ 0..card(V ) − 1 · I nvPPM2 ∧
R(n + 1) � Enabled〈iact2〉l

APPLY: Rule WF1

� PROVE: For each event e of PPM2,
I nvPPM2 ∧R(n+1)∧(BA(e)(l, c, l ′, c′)
∨ (l ′ = l ∧ c′ = c))
⇒ I nv′

PPM2
∨ ENABLED ′〈iact2〉l� PROVE: I nvPPM2 ∧ R(n+1)∧BA(angel)(c, c′)

⇒ I nv′
PPM2

∧ ENABLED ′〈iact2〉l� PROVE: I nvPPM2∧R(n+1)⇒ ENABLED〈angel〉c

3.4 Lights: postscript

It is useful finally to add one more step in the direction of
realism in this example. Whereas the daemon of environ-
mental conditions or damage may reasonably be assumed to
be always enabled, the angel may not: bad weather condi-
tions for node–node radio transmission take time to clear,
as does a maintenance team to replace batteries on nodes. It
is thus more realistic to place a strong fairness requirement
on a sometimes-enabled angel. We then find that the anal-

ogous proof to Φ21 of the above becomes a strong fairness
proof—thus generating another, secondary POs Φ22 on the
enablement of the angel:

I nv ∧ R(n + 1) � ENABLED 〈angel〉c
This process suggests a recursive first-order proof

method—provided the recursion terminates with some ini-
tial, weakly fair triggering action.

In this example, we show some elements of our approach
to proof. With the increased granularity of each refinement,
in modifying and adding both variable types and events,
we are decomposing and elaborating the liveness proper-
ties. Thus we show how the coarse-grained abstract liveness
properties arise out of the finer-grained concrete ones. We
also elaborate our fairness assumptions in the finer-grained
setting of each refinement.

Note, in this simple example, that all constituent proof
tasks contain no temporal operators and are thus all state-
ments of FOL. The third hypothesis of the SF1 proof reduces
to a WF1 proof. The proofs are all therefore expressible and
provable in Event-B/RODIN; this we have done.

4 The dancers

A group of dancers [17] are each marked as either fol-
lower(f) or leader(l). The aim of this protocol is to establish
whether there are more leaders, more followers or equal
numbers of each. The protocol should converge to a con-
figuration where if there are (i) initially more leaders than
followers, then #(leaders–followers) leaders and no follow-
ers remain, (ii) initially more followers than leaders, then
#(followers–leaders) followers and no leaders remain, (iii)
initially equal numbers of followers and leaders, then none
of either remain. The target configuration is reached by
applying the following transition rules:

f ↔ l ⇒ 0 ↔ 0 l ↔ 0 ⇒ l ↔ 1 0 ↔ 1 ⇒ 0 ↔ 0

f ↔ 1 ⇒ f ↔ 0

The protocol works by eliminating f-l pairs by the first
rule. It is obvious that only this rule changes the sets of
followers and leaders; the others manipulate only the ones
and zeroes. Thus, the sets of followers and leaders are
monotonically reduced pairwise until one is empty. We use
the names F, L , O,U for the sets of followers, leaders, ones
and zeroes, respectively. For convenience of proof we use
the name X for a set that may be either all followers or all
leaders, depending on context. We show that this protocol
eventually leads to one of two stable (unchanging) configu-
rations: either F, O or F,U .

As for the lights, the first model Dance0 converges in
one-shot, dealing separately with the two cases. The live-
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Fig. 8 Development scheme

ness proof is essential by WF1 as before. The first refined
model Dance1 introduces two intermediate configurations
X, O,U for more followers and leaders, respectively. Thus
convergence is in two steps for each case, proved by WF1
and transitivity. The second refinement Dance2 introduces
the pairwise interaction rules of the protocol. Inductive lead-
sto properties at this level are introduced to decompose
convergence in two phases through X, O,U , finally to X, O
or X,U . The inductive cases X, O,U though X, O are
proved by WF1. However, the case through X,U is more
complex and requires a new proof rule GF1, which we intro-
duce. We will see how the proof of liveness properties at
each level is effectively a stepwise construction of the proof
S pec(M),Φc � Φa as per our approach A2 of Sect. 2.6.

Figure 8 shows the development scheme for the Dancers.
As before each lower-level proof step, the hypotheses used
in the temporal proof rules are easily coded and proved in
RODIN; we indicate any exceptions to this.

The set D of all dancers is initially partitioned into F0
the initial set of followers, L0 the initial set of leaders, O0

the initial set of zero dancers and U0 the initial set of one
dancers. In the original problem [17], the setsU0 and O0 are
empty but here we generalise the problem. Moreover, the
original problem only stabilises to no leaders or no follow-
ers (or both), where the ones and zeroes can remain dynamic
through enabled transition rules. We converge to a terminat-
ing state.

In temporal language the first property to verify is:

Φ0 : parti tion(D, L0, F0,U0, O0) �

∃
⎛

⎝

X,

U,

O

⎞

⎠ .

⎛

⎜

⎜

⎜

⎜

⎝

parti tion(D, X,U, O)

∧
⎛

⎝

X ⊆ F0 ∧U = ∅

∨
X ⊆ L0 ∧ O = ∅

⎞

⎠

∧ O0 ∪U0 ⊆ O ∪U

⎞

⎟

⎟

⎟

⎟

⎠

4.1 Model Dance0: stating the convergence to one of
two stable configurations

Our first model Dance0 starts by defining abstract events
which in one shot nondeterministically assign to the appro-
priate case: either no leader or no follower. Event Followers
applies when there are at least as many followers as lead-

ers: there is an injection i from L0 into F0. Event Leaders
applies when the number of leaders is strictly greater than
the number of followers: there is a nonsurjective injection i
from F0 into L0. Each event is simulating in a one shot way
the liveness property according to two possible scenarios.

EVENT Followers0
ANY i
WHERE

F = F0 ∧ L = L0 ∧ O = O0 ∧U = U0
i ∈ L0 � F0

THEN
U, O, L , F : |
⎛

⎜

⎜

⎝

parti tion(D, F ′, L ′, O ′,U ′)
∧ L ′ = ∅ ∧ F ′ = F \ i[L]
O ′ = O ∪ i[L] ∪ L ∪ U ∧ U ′ = ∅

∧ O0 ∪ U0 ⊆ O ′ ∪ U ′))

⎞

⎟

⎟

⎠

END

EVENT Leaders0
ANY i
WHERE

L = L0 ∧ F = F0 ∧ O = O0 ∧U = U0
i ∈ F0 � L0 ∧ i[F0] �= L0

THEN
U, O, L , F : |
⎛

⎜

⎜

⎝

parti tion(D, F ′, L ′, O ′,U ′)
∧ F ′ = ∅ ∧ L ′ = L \ i[F]
U ′ = U ∪ i[F] ∪ F ∪ O ∧ O ′ = ∅

∧ O0 ∪ U0 ⊆ O ′ ∪ U ′))

⎞

⎟

⎟

⎠

END

This initial model asserts the existence of an injection
from one set of dancers into the other. The algorithmic
process will progressively construct the final injection. We
should also notice that the members of D are not distin-
guishable.

Relationship LIVE on the first line of Fig. 8 (i.e.
S pec(Dance0) � Φ0) is derived using the LATTICE rule,
case analysis and the WF rule for this model. The invariant
I nvDance0 of this model asserts parti tion(D, L , F,U, O)

as well as allowing reduction of the sizes of F, L and
increases in O,U .

– FAIR(DANCE0) defines the fairness assumptions over
events Followers0 and Leaders0: WF F,L ,O,U

(Followers0) ∧ WF F,L ,O,U (Leaders0)
– I nvDance0 =̂ parti tion(D, F, L , O,U ) ∧ F ⊆ F0 ∧

L ⊆ L0 ∧ O0 ∪ U0 ⊆ O ∪ U
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– The liveness property to prove is Φ0

– Proof is by case analysis:

PROVE: parti tion(D, L0, F0,U0, O0) �

∃
⎛

⎝

X,

U,

O

⎞

⎠ .

⎛

⎜

⎜

⎜

⎜

⎝

parti tion(D, X,U, O)

∧
⎛

⎝

X ⊆ F0 ∧U = ∅

∨
X ⊆ L0 ∧ O = ∅

⎞

⎠

∧ O0 ∪U0 ⊆ O ∪U

⎞

⎟

⎟

⎟

⎟

⎠

APPLY: LATTICE rule and case analysis

� PROVE:

⎡

⎢

⎢

⎢

⎢

⎢

⎣

parti tion(D, L0, F0,U0, O0)

⇒
⎛

⎜

⎝

parti tion(D, L0, F0,U0, O0) ∧ ∃i.i ∈ L0 � F0
∨
parti tion(D, L0, F0,U0, O0) ∧ ∃i.i ∈ F0 � L0 ∧ i[F0] �= L0

⎞

⎟

⎠

⎤

⎥

⎥

⎥

⎥

⎥

⎦

PROOF: Either there are at least as many followers as
leaders, or there are more leaders. 
�� PROVE: parti tion(D, L0, F0,U0, O0)∧∃i.i ∈ L0�

F0 � ∃X.

(

parti tion(D, X, O)

∧ X ⊆ F0 ∧U = ∅

)

APPLY: Case - at least as many followers as leaders:
apply WF1 to Followers0:� PROVE: For each event e of DANCE0,
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

(

parti tion(D, L0, F0,U0, O0)

∧ ∃i.i ∈ L0 � F0

)

∧¬∃X.

(

parti tion(D, X, O)

∧ X ⊆ F0 ∧U = ∅

)

⎞

⎟

⎟

⎠

∧
(

BA(e)((D, L , F,U, O), (D, L , F,U, O)′)
∨ (D, L , F,U, O)′ = (D, L , F,U, O)

)

⇒
⎛

⎜

⎜

⎜

⎜

⎝

(

parti tion(D, L0, F0,U0, O0)

∧ ∃i.i ∈ L0 � F0

)

∨
∃X ′.

(

parti tion(D′, X ′, O ′)
∧ X ′ ⊆ F0 ∧U ′ = ∅

)

⎞

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

� PROVE:
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

(

parti tion(D, L0, F0,U0, O0)

∧ ∃i.i ∈ L0 � F0

)

∧¬∃X.

(

parti tion(D, X, O)

∧ X ⊆ F0 ∧U = ∅

)

⎞

⎟

⎟

⎠

∧BA(Followers0)((D, L , F,U, O), (D, L , F,U, O)′)
⇒
∃X ′.

(

parti tion(D′, X ′, O ′)
∧ X ′ ⊆ F0 ∧U ′ = ∅

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

� PROVE:

⎛

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

(

parti tion(D, L0, F0,U0, O0)

∧ ∃i.i ∈ L0 � F0

)

∧¬∃X.

(

parti tion(D, X, O)

∧ X ⊆ F0 ∧U = ∅

)

⎞

⎟

⎟

⎠

⇒ ENABLED 〈Followers0〉(D,L ,F,U,O)

⎞

⎟

⎟

⎟

⎟

⎠

� PROVE: parti tion(D, L0, F0,U0, O0) ∧
∃i.i ∈ F0 � L0 ∧ i[F0] �= L0 �
∃X.

(

parti tion(D, X,U )

∧ X ⊆ L0 ∧ O = ∅

)

APPLY: Case - more leaders, apply WF1 rule to
Leaders0 straightforwardly as above

� PROVE: Assemble final result predicate:
⎛

⎜

⎜

⎜

⎜

⎝

∃X.

(

parti tion(D, X, O)

∧ X ⊆ F0 ∧U = ∅

)

∨
∃X.

(

parti tion(D, X,U )

∧ X ⊆ L0 ∧ O = ∅

)

⎞

⎟

⎟

⎟

⎟

⎠

⇒ ∃
⎛

⎝

X,

U,

O

⎞

⎠ .

⎛

⎜

⎜

⎜

⎜

⎝

parti tion(D, X,U, O)

∧
⎛

⎝

X ⊆ F0 ∧U = ∅

∨
X ⊆ L0 ∧ O = ∅

⎞

⎠

∧ O0 ∪U0 ⊆ O ∪U

⎞

⎟

⎟

⎟

⎟

⎠

PROOF: Derived from predicate calculus. 
�
The LATTICE rule is applied in a specialised way with

case analysis, and we refer to the CONFLUENCE rule as in
proof lattices by Owicki and Lamport [60]. We summarise
the proof technique in Fig. 9.

We have proved the liveness property Φ0 using fairness
assumptions on very macroscopic steps, namely Followers0
and Leader0. In refinementDance2 wewill see the dancers
progressing according to a pairwise dancing rule; this means
that there are intermediate configurations. We adopt some
notation for simplifying the expression of diagrams and for-
mulas. The following configurations are of interest. Note
that each represents a partition of the dancers into up to four
sets:

– D = F ⊕ L ⊕ O ⊕ U : at least one each of Follower,
Leader, ZERO and ONE

– D = F ⊕ O ⊕ U : at least one each of Follower, ZERO
and ONE, and no Leader

– D = L⊕O⊕U : at least one each of Leader, ZERO and
ONE, and no Follower

– D = L ⊕ U : at least one each of Leader and ONE, and
no Follower and no ZERO

– D = F ⊕ O: at least one each of Follower and ZERO,
and no Leader and no ONE

– D = ... ⊕ T ⊕ ... where T = 0 or 1 means that there is
exactly one ZERO or ONE

– D = L ⊕ 0i ⊕ 1 j : at least one Leader, and i ZEROs and
j ONEs

Using this notation we rewrite Figs. 9 as 10. We regard
reaching these configurations as liveness properties. Thus,
interpreting Figs. 10, 11 as predicate diagrams [31], each
arrow states a � property, describing progress between the
configurations. Model Dance0 in Fig. 10 is then refined
to Dance1 in Fig. 11, which introduces intermediate con-
figurations and decomposes the two possible runs (either
followers or leaders).
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Fig. 9 Liveness proof diagram:
Dance0

Fig. 10 Liveness proof
diagram: Dance0, schematic

Fig. 11 Liveness proof
diagram: Dance1

4.2 Model Dance1: decomposing the process into two
phases

In the first refinement we rephrase and elaborate the liveness
properties of Dance0 in Fig. 10 to obtain a decomposition
in Fig. 11, using the abstract notation introduced in the last
subsection6.

We describe the two target configurations D = F ⊕ O
and D = L ⊕ U as stable in the sense of not changing
further. Two new events are introduced in this step, namely

6 For ease of reading, we gloss over the event artefact required to avoid
redundant variables in data refinement, as per iact0 in Sect. 3.1.

PreFollowers1 and PreLeaders1 which each prepare the
convergence by eliminating all (l,f) pairs defined by the
injections. These events thus reach an interim configuration
describing at least as many followers (D = F ⊕ O ⊕U ) or
more leaders (D = L ⊕ O ⊕U ), respectively. These events
abstract out all transitions of the three rules that change only
ones and zeroes, until an interim configuration is reached.
Note that our interim configurations are the final configura-
tions of the protocol in [17]; we extend their result as per
Fig. 11.
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EVENT PreFollowers1
ANY i
WHERE

grd1 : i ∈ L0 � F0
grd2 : F = F0 ∧ L = L0
grd3 : O = O0 ∧U = U0

THEN
act1 : F := F \ i[L]
act2 : U, O, L :|

(U ′ ⊆ D ∧ O ′ ⊆ D
∧U ′ ∩ (F \ i[L]) = ∅ ∧ O ′ ∩ (F \ i[L]) = ∅

∧ U ′ ∩ O ′ = ∅ ∧ O0 ∪U0 ⊆ O ′ ∪U ′ ∧ L ′ = ∅

∧ D = L ′ ∪U ′ ∪ O ′ ∪ (F \ i[L])
END

EVENT PreLeaders1
ANY i
WHERE

grd1 : i ∈ F0 � L0
grd2 : i[F0] �= L0
grd3 : F = F0 ∧ L = L0
grd4 : O = O0 ∧U = U0

THEN
act1 : L := L \ i[F]
act2 : U, O, F :|

(U ′ ⊆ D ∧ O ′ ⊆ D
∧U ′ ∩ (L \ i[F]) = ∅ ∧ O ′ ∩ (L \ i[F]) = ∅

∧ U ′ ∩ O ′ = ∅ ∧ O0 ∪U0 ⊆ O ′ ∪U ′ ∧ L ′ = ∅

∧ D = F ′ ∪U ′ ∪ O ′ ∪ (L \ i[F])
END

The two events Followers1 and Leaders1 refine the cor-
responding events of model Dance0. We follow the same
proof process as in that model to derive the following four
liveness properties.

– FAIR(DANCE1) defines the fairness assumptions over
events PreFollowers1, PreLeaders1, Followers1,
Leaders1:
WFF,L ,O,U (PreFollowers1)∧WFF,L ,O,U (PreLeaders1)∧
WFF,L ,O,U (Followers1) ∧ WFF,L ,O,U (Leaders1)

I nvDance1 =̂ I nvDance0

=̂ parti tion(D, F, L , O,U ) ∧ F

⊆ F0 ∧ L ⊆ L0 ∧ O0 ∪ U0 ⊆ O ∪ U

– Φ1
de f=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

D = F ⊕ L ⊕ O ⊕U
∧ ∃i.i ∈ L0 � F0

)

� D = F ⊕ O ⊕U

D = F ⊕ O ⊕U � D = F ⊕ O
⎛

⎝

D = F ⊕ L ⊕ O ⊕U
∧ ∃i.i ∈ F0 � L0
∧ i[F0] �= L0

⎞

⎠ � D = L ⊕ O ⊕U

D = L ⊕ O ⊕U � D = L ⊕U

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

– Φ1 REF Φ0

The derivation of relationship LIVE on the second line
of Fig. 8 (i.e. S pec(Dance1) � Φ1) is simply done
using the WF rule on each of the four events. We observe
that Φ1 REF Φ0 follows by applying the proof steps of
S pec(Dance0) � Φ0 of Sect. 4.1, as well as the TRANSI-

TIVITY and CONFLUENCE rules. Thus the refinement of
liveness proof elaborates the abstract liveness proof.

We have obtained a process which acts in two steps or
phases, according to the case of either at least as many
followers, or more leaders. In the next refinement we can
decompose the events of the model Dance1 into a set of
events which model the algorithm of the original protocol
itself.

4.3 Model Dance2: identifying the algorithm

4.3.1 Prolegomena

We now refine the four events of Dance1 into events which
simulate the transition rules of the following population pro-
tocol:

f ↔ l ⇒ 0 ↔ 0 l ↔ 0 ⇒ l ↔ 1 0 ↔ 1 ⇒ 0 ↔ 0

f ↔ 1 ⇒ f ↔ 0

Model Dance2 introduces the algorithm for getting a
configuration satisfying D = F ⊕ O ∨ D = L ⊕ U . We
introduce new variables v f , vl, old f , oldl, vu, vo, f , l with
the following roles:

– vl, v f initially contain L0, F0, respectively; these vari-
ables accumulate the remaining leaders or followers. At
convergence, L , F are respectively assigned to their final
values

– old f , oldl are initialised empty; they accumulate the fol-
lowers and leaders, respectively, as these are eliminated
in pairs by the first transition rule

– vu, vo contain one-dancers and zero-dancers, respec-
tively. At convergence, U, O are respectively assigned
to their final values

– f, l each record the injection required for the refinement;
these functions are constructed iteratively and only one
is finally used, since either followers or leaders win. f
maps oldl to old f and l maps old f to oldl

Considering the transition rule f ↔ l ⇒ 0 ↔ 0 imple-
mented by event Dancing: we see that when a dancer of vl
or v f moves into vo, he/she will never return to vl or v f .
The other rules do not change the state of participating L
or F dancers. We can derive an inductive property based on
vl∪v f—with followers and leaders remaining—expressing
the fact that the set vl ∪ v f is strictly decreasing by the rule
f ↔ l ⇒ 0 ↔ 0. The model Dance2 is characterised by the
invariant of Fig. 12.

The refinement is checked by the RODIN platform; we
list the events of this model (The notation BA(e)(h, h′)
denotes the before–after relation of the event e in the frame
h.).
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Fig. 12 Invariant for model
Dance2

The invariant of Fig. 12 states that the two f and l are
progressively built during the computing process. Moreover,
it gives the relationship between these two functions: for
instance, f = l−1 ∧ l = f −1.

EVENT Dancing
ANY

x, y
WHERE

grd1 : x ∈ v f ∧ y ∈ vl
THEN

act1 : vo := vo ∪ {x, y}
act2 : v f := v f \ {x}
act3 : vl := vl \ {y}
act4 : old f := old f ∪ {x}
act5 : oldl := oldl ∪ {y}
act6 : f (y) := x
act7 : l(x) := y

END

Event Dancing is guarded on the
existence of both followers and
leaders. In fact, the event modifies
vo, v f , vl and is building both the
injections f and l. It is still an
abstract model and we are not yet
sufficiently refined to merge in one
unique concrete event.
The three next events do not mod-
ify v f and vl; they are modelling
the three transition rules over vo
and vu.

EVENT DancingFU
ANY

x, y
WHERE

grd1 : x ∈ v f ∧ y ∈ vu
THEN

act1 : vo := vo ∪ {y}
act2 : vu := vu \ {y}

END

EVENT DancingLO
ANY

x, y
WHERE

grd1 : x ∈ vl ∧ y ∈ vo
THEN

act1 : vo := vo \ {y}
act2 : vu := vu ∪ {y}

END

EVENT Dancing0U
ANY

x, y
WHERE

grd1 : x ∈ vo ∧ y ∈ vu
THEN

act1 : vo := vo ∪ {y}
act2 : vu := vu \ {y}

END
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Finally, the two events PreFollowers2 and PreLeaders2
are modelling the end of the construction of the injection:
either f or l. We do not refine the events Followers1 and
Leaders1 that will be refined in the last model into an event
called Termination. In fact, these events are only observing
the end of the process.

EVENT PreLeaders2
REFINES PreLeaders1
WHEN

grd3 : v f = ∅ ∧ vl �= ∅

grd4 : end = FALSE
WITNESSES
i : i = l

THEN
act4 : U := vu
act5 : O := vo
act6 : F := v f
act7 : L := vl
act8 : end := T RUE

END

EVENT PreFollowers2
REFINES PreFollowers1
WHEN

grd4 : vl = ∅

grd5 : end = FALSE
WITNESSES
i : i = f

THEN
act4 : U := vu
act5 : O := vo
act6 : F := v f
act7 : L := vl
act8 : end := T RUE

END

4.3.2 Liveness Properties

Now we consider the local liveness properties Φ2 and how
they refine Φ1. This liveness refinement is proved as for the
lights with the LATTICE rule. The new liveness properties
are simply defined as follows:

– FAIR(DANCE2) defines the three fairness assumptions
required to prove each of the threeΦ2 properties, respec-
tively:

– WF h(Dancing), where h =̂ (vl, v f, vu, vo) is the
frame of these assertions

– WF h(DancingFU)

– GFdh
de f= ∀i, j.i, j ∈ 1..n ∧ i + j = card(O ∪

U ) ⇒ GFh((D = L ⊕ 0i ⊕ 1 j ,DancingLO, (D =
L ⊕ 0i−1 ⊕ 1 j+1).

– The invariant is defined in Fig. 12. Define:

DANC I NG(vl, v f, vu, vo)

=̂ parti tion(D, vl, v f, vu, vo), i.e. D = L ⊕ F ⊕ O ⊕U

DANC I NGF(v f, vu, vo)

=̂ parti tion(D, v f, vu, vo), i.e. D = F ⊕ O ⊕U

DANC I NGL(vl, vu, vo)

=̂ parti tion(D, vl, vu, vo), i.e. D = L ⊕ O ⊕U

– Φ2
de f=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

DANC I NG(vl, v f, vu, vo)
∧vl ∪ v f �= ∅

)

� ∃

⎛

⎜

⎜

⎝

vl ′,
v f ′,
vu′,
vo′

⎞

⎟

⎟

⎠

.

(

DANC I NG(vl ′, v f ′, vu′, vo′)
∧vl ′ ∪ v f ′ ⊂ vl ∪ v f

)

(

DANC I NGF(v f, vu, vo)
∧vu �= ∅

)

� ∃
⎛

⎝

v f ′,
vu′,
vo′

⎞

⎠ .

(

DANC I NGF(v f ′, vu′, vo′)
∧vu′ ⊂ vu

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

– Proof that S pec(Dance2) � Φ2, i.e. relationship
LIVE on the third line of Fig. 8, is simply derived as
before by application of WF1 to each of Dancing and
DancingFU:

PROVE:

⎛

⎝

DANC I NG(vl, v f, vu, vo)
∧vl �= ∅

∧v f �= ∅

⎞

⎠

� ∃

⎛

⎜

⎜

⎝

vl ′,
v f ′,
vu′,
vo′

⎞

⎟

⎟

⎠

.

(

DANC I NG(vl ′, v f ′, vu′, vo′)
∧vl ′ ∪ v f ′ ⊂ vl ∪ v f

)

APPLY: Rule WF1 applied to inductive action Dancing

� PROVE: For each event e of {Dancing,DancingOU,

DancingFU,DancingLO},
⎛

⎜

⎜

⎝

DANC I NG(vl, v f, vu, vo)
∧vl �= ∅ ∧ v f �= ∅

∧card(L0) < card(F0)
∧(BA(e)(h, h′) ∨ h′ = h)

⎞

⎟

⎟

⎠

⇒ DANC I NG(vl ′, v f ′, vu′, vo′)
∧vl ′ ∪ v f ′ ⊆ vl ∪ v f

� PROVE:

⎛

⎝

DANC I NG(vl, v f, vu, vo)
∧vl �= ∅ ∧ v f �= ∅

∧BA(Dancing)(h, h′)

⎞

⎠

⇒ DANC I NG(vl ′, v f ′, vu′, vo′)
∧ vl ′ ∪ v f ′ ⊂ vl ∪ v f

� PROVE:

(

DANC I NG(vl, v f, vu, vo)
∧vl �= ∅ ∧ v f �= ∅

)

⇒ ENABLED 〈DANCING〉h

PROVE:
(

DANC I NGF(vl, v f, vu, vo)
∧vu �= ∅

)

� ∃

⎛

⎜

⎜

⎝

vl ′,
v f ′,
vu′,
vo′

⎞

⎟

⎟

⎠

.

(

DANC I NGF(vl ′, v f ′, vu′, vo′)
∧ vu′ ⊂ vu

)

APPLY: Rule WF1 applied as above to inductive action
DancingFU

– Φ2 REF Φ1

Φ1 expresses the liveness properties at a very high level
of abstraction via the four transitive leadsto properties to the
interim and final configurations, for each case as per Fig.
11. Model Dance2 introduces the protocol rules as itera-
tions based initially on the elimination of pairs of dancers
by event Dancing. Φ2 REF Φ1 is ensured by three applica-
tions of the LATTICE rule. This requires the identification
of the inductive properties below on well-founded relations
seen in Φ2.

In order to prove the fourth property of Φ1, i.e. D = L ⊕
O ⊕U � D = L ⊕U , we might hope to add the following
leadsto property to Φ2:
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(

DANC I NGL(vl, vu, vo)
∧vl �= ∅

)

�

∃
⎛

⎝

vl ′,
vu′,
vo′

⎞

⎠ .

(

DANC I NGL(vl ′, vu′, vo′)
∧vo′ ⊂ vo

)

This property does not hold because of the peculiar
demonic character of the rule 0 ↔ 1 ⇒ 0 ↔ 0, which by
consuming 1’s acts against the rule l ↔ 0 ⇒ l ↔ 1 that we
wish to converge. See Sect. 4.3.3 below for discussion on
how we prove the convergence case to D = L ⊕ U in the
“Appendix”.

PROVE:

{(

DANC I NG(vl, v f, vu, vo)
∧vl ∪ v f �= ∅

)

�

∃

⎛

⎜

⎜

⎝

vl ′,
v f ′,
vu′,
vo′

⎞

⎟

⎟

⎠

.

(

DANC I NG(vl ′, v f ′, vu′, vo′)
∧vl ′ ∪ v f ′ ⊂ vl ∪ v f

)}

�

(

D = F ⊕ L ⊕ O ⊕U
∧ ∃i.i ∈ L0 � F0

)

� D = F ⊕ O ⊕U

PROOF: By temporal rule LATTICE for event Dancing. 
�
PROVE:

{(

DANC I NGF(v f, vu, vo)
∧vu �= ∅

)

� ∃
⎛

⎝

v f ′,
vu′,
vo′

⎞

⎠ .

(

DANC I NGF(v f ′, vu′, vo′)
∧vu′ ⊂ vu

)}

�

D = F ⊕ O ⊕U � D = F ⊕ O

PROOF: By temporal rule LATTICE for eventDancingFU.

�

PROVE:
{(

DANC I NG(vl, v f, vu, vo)
∧vl ∪ v f �= ∅

)

� ∃

⎛

⎜

⎜

⎝

vl ′,
v f ′,
vu′,
vo′

⎞

⎟

⎟

⎠

.

(

DANC I NG(vl ′, v f ′, vu′, vo′)
∧vl ′ ∪ v f ′ ⊂ vl ∪ v f

) }

�

(

D = F ⊕ L ⊕ O ⊕U
∧ ∃i.i ∈ F0 � L0 ∧ i[F0] �= L0

)

� D = L ⊕
O ⊕U

PROOF: By temporal rule LATTICE for event Dancing. 
�

4.3.3 General fairness assumption for dancing

The proof of the property D = L⊕O⊕U � D = L⊕U is
given in the “Appendix”. The proof is intricate and requires a
new, stronger fairness assumption than those seen so far. We
define an appropriate fairness assumption called the general
fairness assumption in PP. The Event-B model of the previ-
ous section expresses the population protocol rules and does
not express any assumptions over executions or schedul-
ing. Indeed, such statements are not possible in Event-B,
which is a language of single-step state transitions. We now
analyse fairness conditions to prove that the protocol reaches
D = L ⊕ O ⊕U � D = L ⊕U .

The configurations are of the form Oi1 j with i + j = n
and the actions are defining the following graph over those
configurations:

On � On−111 � On−212 � · · · � O21n−2

� O1n−1 → 1n

The assumption called general fairness is very strong,
since it allows to derive that the system will get out the pos-
sible loop. The proof is possible because of the finiteness of
the set of possible configurations.

As before there are only two enabled events in this case:
DancingLO, DancingOU. However, this proof is a more
complex argument than case 1 and requires a richer fair-
ness assumption because of the way DancingOU consumes
the ONEs produced by DancingLO. We see looping transi-
tions through the intermediate configurations and note that
the configuration D = L⊕U is stable once reached, because
DancingOU becomes disabled by the absence of ZEROs:

L ⊕ 0i ⊕ 1 j DancingLO−→ L ⊕ 0i−1 ⊕ 1 j+1

DancingLO−→ · · · L ⊕ 1i+ j

L ⊕ 0i ⊕ 1 j DancingOU←− L ⊕ 0i−1 ⊕ 1 j+1

General fairness states that if a configuration C appears
infinitely often in a sequence of configurations, and if
C −→ C ′, then C ′ should appear also infinitely often in
the sequence.

The proof rule is based on the expression of the gen-
eral fairness assumption which is a special strong fairness
assumption:

GF f (B, E,C)
de f= ��¬Enabled〈B ∧ E ∧ C ′〉 f

∨ ��〈B ∧ E ∧ C ′〉 f

For event E and configurations B,C , GF f (B, E,C)

means that, if E is infinitely often enabled at B and if E can
transition to C , then C will occur infinitely often by execu-
tion of E . General fairness is incorporated into our general
fairness rule GFdh applied to the dancers:

GFdh
de f= ∀i, j · i, j ∈ 1..n ∧ i + j = card(O ∪U ) = n

⇒ GFh(D = L ⊕ 0i ⊕ 1 j ,DancingLO,

D = L ⊕ 0i−1 ⊕ 1 j+1)

The target configuration is the configuration in which
there is no more O element. The general fairness assump-
tion means that each triple of configuration of the sequence
above is infinitely often enabled, since the number of triples
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is finite. Intuitively, under the general fairness, the target
configuration is reached.

We propose a new rule GF1 for deriving liveness proper-
ties under the general fairness assumption. The rule is based
on the WF1 and SF1 rules of Lamport [51]. It extends WF1
with another configuration: from B we may progress to B ′,
take the inductive step to C ′ or reach another configuration
A′ which works against the inductive process. This “counter-
inductive” step is itself counteracted by an assumption that,
given GF f , A � B. E should be enabled in B.

GF1 B ∧ [N ] f ⇒ (B ′ ∨ C ′ ∨ A′)
B ∧ 〈N ∧ E〉 f ⇒ C ′

�[N ] f ∧ GF f (B, E,C) ⇒ (A � B)

B ⇒ Enabled〈E〉 f�[N ] f ∧ GF f (B, E,C) ⇒ (B � C)

The general fairness assumption is defined over (con-
figuration, event, configuration) tuples, unlike the classical
fairness assumptions made on actions or events in TLA. The
classical WF/SF proof rules of TLA are not enough to prove
the reachability of the case 2 configuration.

The soundness of this rule is proved by showing that
traces (sequences of configurations) generated by N under
the assumption of fairness GF f are ensuring the � prop-
erty.

PROOF From assumptions (1–4) we will infer: �[N ] f ∧
GF f ⇒ (B � C)

Let a sequence of configurations for a given system be
generated by N with state variables f . We assume that E is a
special action of the system. Action E is executed under the
general fairness assumption and it can be one of the actions
amongst a0, . . . , ai , . . .:

D0
a0−→ D1

a1−→ D2
a2−→ · · · ai−1−→ Di

ai−→ Di+1
ai+1−→ · · ·

We assume that B, C and A are three state predicates.
We interpret these predicates over configurations by writing
B(Di ) as Bi and similarly A(Di ) as Ai , C(Di ) as Ci .

Let us assume that the sequence of configurations satis-
fies �[N ] f ∧ GF f and that B holds for some configuration
Di1 : Bi1 . We will build a (sub-)sequence of B’s :

Bi1 . . . Bi2 . . . Bi j . . . Bi j+1 . . .

We assume that between no two Bs does a C occur, and
argue by contradiction.

We know according to (2) that there is a possible transi-
tion by E to C and we know that the next state is either A,
B or C by (1). Since between two Bs we assume there is no
C, there must be either B or A, giving

Bi1(B ∨ A)

B will be followed by either B or A as above, and from
(3) we know A will be followed in a finite number of steps
by B, giving

Bi1(B)∗A(. . .)Bi2

Inductively this extends to

Bi1(B)∗A(. . .)Bi2(B)∗A(. . .)Bi j (B)∗A(. . .)Bi j+1(B)∗A(. . .)

Thus we have built an infinite sub-sequence of Bs with
configurations D in which the event E is enabled with a
possible transition to C , but no C arises. This contradicts
the general fairness assumption on (B, E,C). Hence C will
eventually appear. 
�

4.4 Generating the population protocol from refinement

The last model is called Protocol. Its data refine away inter-
mediate variables; the main events are:

EVENT Termination
REFINES PreLeaders2PreFollowers2
WHEN

grd3 : v f = ∅ ∨ vl = ∅

grd5 : end = FALSE
THEN

act4 : U := vu
act5 : O := vo
act6 : F := v f
act7 : L := vl
act8 : end := T RUE

END

EVENT Dancing
REFINES Dancing
ANY

x, y
WHERE

grd1 : x ∈ v f
grd2 : y ∈ vl

THEN
act1 : vo := vo ∪ {x, y}
act2 : v f := v f \ {x}
act3 : vl := vl \ {y}

END

Event Termination models the global termination of the
process; it is not an action of the protocol itself but only an
observation by a global observer. The condition end is set
to true at this step. It refines two events by merging them.
Event Dancing is transformed into the rule for the popula-
tion protocol: f ↔ l ⇒ 0 ↔ 0.

Event DancingFU remains unchanged and is interpreted
as the population protocol rule: f ↔ 1 ⇒ f ↔ 0. Similarly,
eventsDancingLO andDancingOU remain unchanged and
are interpreted as rules l ↔ 0 ⇒ l ↔ 1 and 0 ↔ 1 ⇒ 0 ↔
0 respectively.

5 Analysing leader election in population protocols

5.1 Introduction

Leader election is a significant mechanism for distributed
systems. Algorithms based on a central coordinator exist
for many problems. The existence, selection, reliability and
notification of such a leader node to all other nodes is
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an important area of study, and has been examined in a
population protocol setting [14,23,30,37]. We consider the
example of the eventual leader detector [37] population pro-
tocol, a version of the failure detector, which is a class
of diagnostic devices for reporting failure information to
nodes. The eventual leader detector is an oracle which
reports periodically to every node a guess about whether
a leader exists in the network or not. The guess need not
be consistent; different guesses may be reported to differ-
ent nodes. This is a self-stabilising algorithm, an execution
of which “converges to a set of pre-defined stable config-
urations starting from any arbitrary configuration” [37]. A
guarantee of self-stabilisation is given: in any trace, if from
some point there is either always a leader, or always no
leader, the oracle will eventually become reliable, i.e. report
the fact accurately to each agent. This is stated more pre-
cisely [37]:

– If all but finitely many configurations of the trace
lack a leader, then each process receives input
false at all but finitely many steps

– If all but finitely many configurations of the trace
contain one or more leaders, then each process
receives input true at all but finitely many steps

Using the eventual leader detector, we model the self-
stabilising leader election algorithm for a complete network
graph, as defined by Fischer and Jiang [37]. We can regard
this model as abstracting over communication unreliability
in a lossy network: if each node expects periodic notifi-
cation of the existence or identity of a leader, this will
be subject to a timeout. In an unstable network, nodes
and links may fail intermittently or permanently, alterna-
tive routing will be sought, and timeouts will be breached.
In a stable network the timeouts will be honoured and the
leader notifications (oracle inputs to nodes) will be reli-
able.

This formulation is interesting: in the unstable network,
there is a high degree of nondeterminism in the status of
nodes and their awareness of leader existence or nonexis-
tence. Stabilisation for [37] takes place in any trace where
there is either always a leader, or always no leader. The
latter possibility is an artefact of their proof; the fairness
assumptions we will make will ensure that there is even-
tually always a leader. Thus we interpret stabilisation as the
point at which the oracle has become reliable and a leader
exists; this realises the two self-stabilising conditions above.
The oracle may well be reliable before stabilisation, i.e.
before a leader exists. A leader may exist before the ora-
cle is known to be reliable. The state of network nodes can
change nondeterministically before stabilisation. We denote
stabilisation by flag stable = T RUE in models SEL2 and
beyond. Nondeterminism remains after stabilisation, in the
dynamics of leader election.

Please note that there is some complexity in the two uses
we make of nondeterminism in this example. We use it (i) to
model instability in the network and (ii) for modelling con-
venience in avoiding duplicate variables in data refinement,
similarly to the lights model PPM0 in Sect. 3.1. This leads to
more nondeterministic event nondet transitions in the proof
diagrams than are necessary, and these are sometimes omit-
ted from the diagrams to avoid clutter. These transitions do
not affect the proof reasoning. In the last refinement model
SEL5 they are finally refined away.

We model the problem through four refinements; see
Fig. 13. Machines SEL1, . . . , SEL5 progressively define
the leader election protocol under specific fairness con-
straints. E1, . . . , E5 list the eventuality properties and safety
properties. C-SEL is the context of the global development.

5.2 Specification of the leader election (SEL1)

The first machine has two events. Event election1 models
a one-shot election process; event nondet1 models the non-
deterministic activity of the environment and will be refined
in further steps. The environment acts either positively or
negatively with respect to the goal of electing a leader, thus
giving a closed model.

Context C-SEL defines the
node set C and their states
taken from set S =̂ {L , N }.
Machine SEL1 has two
variables: done (initialised to
FALSE) to control the election
and s to describe the current
state of the network. Here
the initial configuration is
completely nondeterministic
and may have no leader at all.

EVENT election1 EVENT nondet1
ANY WHEN

c, ns grd1 : done = FALSE
WHERE THEN

grd0 : done = FALSE act1 : s :∈ C → S
grd3 : c ∈ C END
grd4 : ns ∈ C → S
grd5 : ∀d · d ∈ C ∧ d �= c

⇒ ns(d) = N
grd6 : ns(c) = L

THEN
act1 : s := ns
act2 : done := T RUE

END

The two properties E1 of this model are:

– liveness property: ¬ done � done
– safety property (and invariant):�(done = T RUE⇒ ∃c ·(s(c) = L∧ (∀d ·d ∈ C∧d �=
c ⇒ s(d) = N ))

This states that done = T RUE is the protocol termina-
tion flag: the leader is elected.

The safety property is derived from the Event-B machine
and the liveness property is simply derived by WF1, assum-
ing WF(election1). The next model will refine the current
model by introducing the notion of stability: the election
is possible when the network is stable. Before stabilisation
event nondet1 may lead to a configuration without lead-
ers or an unstable configuration. The model SEL1 defines
the service that the system should ensure and it is a very
abstract expression with a very simple fairness assumption
introduced by WF1 rule.
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Fig. 13 Development scheme
for leader election

Fig. 14 SEL2—stability

5.3 Stability and instability of the network (SEL2)

The first refinement SEL2 introduces the fact that the system
may be in an unstable state. In our interpretation, the net-
work is in a stable state at the time after stabilisation, when
the oracle has become reliable; this is reflected in the invari-
ant property in the second refinement SEL3. Fig. 14 gives
the liveness proof diagram and includes implicit nondet2
self-loop transitions on each of the two upper states.

Events are given in the following. The liveness properties
are:

– ¬ done ∧ ¬ stable � ¬ done ∧ stable: ensured by
event preelection under weak fairness

– ¬ done ∧ stable � done ∧ stable: ensured by event
election2 under strong fairness

These properties are combined as E2 below, and used to

infer the property E1
de f= ¬ done � done of the abstract

model, i.e. that E2 REF E1. We use the inference rules for
liveness properties to decompose the system. The refine-
ment machine SEL2 is defined by case analysis: the system

is either stable or not. A new event preElection is added
which modifies the new stable flag and indicates that this is
the stabilisation phase. In this abstraction we conflate sta-
bilisation with the existence of a leader; prestabilisation—
creation of a leader before stabilisation—will appear in a
later refinement. We assume that when stability is obtained,
we keep the system in a stable configuration by means of sta-
ble. Although refined event nondet2 can destabilise again in
this model, this behaviour will be refined away in the final
model SEL5. The Event-B machines are used for analysing
the election process and allow us to express assumptions.

EVENT preElection2 REFINES nondet1
WHEN

grd2 : done = FALSE
THEN

act2 : s, stable : |
⎛

⎝

s′ ∈ C → S
∧ s′−1[{L}] �= ∅

∧ stable′ = T RUE

⎞

⎠

END
EVENT nondet2 REFINES nondet1

WHEN
grd1 : done = FALSE

THEN
act1 : s :∈ C → S
act2 : stable :∈ BOOL

END
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EVENT election2 REFINES election1
ANY

c, ns
WHERE

grd0 : done = FALSE
grd3 : c ∈ C
grd4 : ns ∈ C → S
grd5 : ∀d · d ∈ C ∧ d �= c ⇒ ns(d) = N
grd6 : ns(c) = L
grd21 : stable = T RUE
grd22 : s−1[{L}] �= ∅

grd23 : c ∈ s−1[{L}]
THEN

act1 : s := ns
act2 : done := T RUE

END

The model SEL2 is still an abstraction of the final
protocol and we are preparing the introduction of local infor-
mation. The oracle is introduced in the next refinement since
it helps nodes to get global information.

– FAIR(SEL2) defines the fairness assumptions over the
event preElection2:
WF s,stable(preElection2) ∧ SF s,stable(election2)

– E2
de f= {¬ done ∧ ¬ stable � ¬ done ∧ stable,

⎛

⎝

¬ done ∧ ¬ stable
∨
¬ done ∧ stable

⎞

⎠ � done ∧ stable}.

– We prove that ¬ done ∧ ¬ stable � ¬ done ∧ stable
by WF1 as before.

– We prove that

⎛

⎝

¬ done ∧ ¬ stable
∨
¬ done ∧ stable

⎞

⎠ � done ∧

stable by applying the PP-SF1 rule of Sect. 2.1 using
the following hypotheses (using x as shorthand for
s, stable). The hypotheses are straightforwardly derived
in RODIN from the Event-B models as before.

H0¬ done ≡ (¬ done ∧ ¬ stable)

∨ (¬ done ∧ stable)

H1¬ done ∧ ¬ stable ∧ [N ]x
⇒ (¬ done′ ∧ ¬ stable′) ∨ (¬ done′ ∧ stable′)

H2¬ done ∧ ¬ stable ∧ 〈N ∧ preElection2〉x
⇒ ¬ done′ ∧ stable′

H3a¬ done ∧ ¬ stable ⇒ Enabled〈preElection2〉x
H3b¬ done ∧ stable ⇒ Enabled〈election2〉x
H4¬ done ∧ [N ]x ⇒ (¬ done′ ∨ done′)
H5¬ done ∧ 〈N ∧ election2〉x ⇒ done′ 
�

In this model the system remains very unstable and can
go back to unstable states because of event nondet2. Event
election2 is infinitely often enabled and is eventually exe-
cuted. The next refinement introduces the oracle which is
the means by which nodes get eventual reliable knowledge

about leader status. We model the instability of the oracle
being unreliable before stabilisation.

5.4 Introducing the oracle (SEL3)

The new variable oracle informs the nodes whether there is
at least one leader or not. Moreover, in liveness reasoning
we use a new shorthand predicate called ldr meaning that
ldr holds, when there is at least one node which is a leader,
i.e. s−1[{L}] �= ∅. We model oracle unreliability prior to
stabilisation. For simplicity we assume a single global ora-
cle value (rather than local ones) at any time. The invariant
relates oracle, stable and s by requiring the oracle to report
reliably when the system is stable, the presence or absence
of a leader:

INVARIANTS
inv31 : oracle ∈ BOOL
inv32 : stable = T RUE ∧ s−1[{L}] = ∅ ⇒ oracle = FALSE
inv33 : stable = T RUE ∧ s−1[{L}] �= ∅ ⇒ oracle = T RUE

The event nondet3 still models the nondeterministic
environment and is subject to fairness assumptions. It adds
implicit transitions which may make the system less stable.
nondet3 is a refined event and integrates the new variable
oracle, preserving the invariant relating stable, ldr and
oracle.

EVENT nondet3 REFINES nondet2
WHEN

grd1 : done = FALSE
THEN

act4 : s, stable, oracle : |
⎛

⎝

s′ ∈ C → S ∧ stable′ ∈ BOOL
∧(stable′ = T RUE ∧ s′−1[{L}] = ∅ ⇒ oracle′ = FALSE)

∧(stable′ = T RUE ∧ s′−1[{L}] �= ∅ ⇒ oracle′ = T RUE)

⎞

⎠

END

The two main fairness assumptions are borrowed from
the assumptions suggested by Fischer and Jiang [37] and are
expressed in a temporal way:

– If all but finitely many configurations of the trace lack
a leader, then each node receives oracle false at all
but finitely many steps: ��¬ ldr ⇒ ��(oracle =
FALSE)

– If all but finitely many configurations of the trace con-
tain one or more leaders, then each node receives oracle
true at all but finitely many steps:��ldr ⇒ ��(oracle = T RUE)

Event election3 is unchanged and still models the one-
shot election. Next we analyse the fairness requirements
for ensuring that the system will eventually reach the state
which is stable with oracle. A first solution (see Fig. 15) is
to assign strong fairness to each event amongst stabilize1,
stabilize2, stabilize3, preStabilize and preElection3. We
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Fig. 15 SEL3: oracle

must prove that each of the three top right ¬ done config-
urations of Fig. 15 leads to ¬ done, stable, oracle, ldr .
In the diagram, we indicate the possible moves between
predicates, and we have mentioned two transitions for the
nondet3 event. In fact this event transitions implicitly from
any predicate to any other predicate—as explained in Sect.
5.1—subject to invariant preservation. This is implicit to
avoid clutter of the diagram. The nondet3 event captures the
guesses of the oracle about the existence of a leader, before
stabilisation.

We set up the fairness and liveness conditions for this
model to fit the proof rule PP-SF2 of Sect. 2.

Proof Pattern PP-SF2

P1

e

α

e

P2

e

β

γ

Q1e

g

e

Q2 e
δ

R

We list the fairness assumptions
and liveness properties. Each SEL3
event below is annotated with the
corresponding transition name in
PP-SF2:
FAIR(SEL3)

de f=
WF x (preStabilize − γ ) ∧ SF x
(stabilize2 − α)

∧WF x (stabilize3 − β) ∧ WF x
(preElection − δ)

∧WF x (stabilize1) ∧ SF x
(election3 − g)

Each line of FAIR(SEL3) corre-
sponds to each liveness property
E31 − E33 in turn (replacing the ∧
operator with commas for brevity)
below by defining:

P1
de f= ¬done,¬ stable, ldr

P2
de f= ¬done,¬ stable,¬ ldr

Q1
de f= ¬done, stable, oracle, ldr

Q2
de f= ¬done, stable,¬ oracle,¬ ldr

R
def= done, stable

E31
de f= {P2 � (P1 ∨ Q2)}

E32
de f= {Q2 � Q1}

E33
de f= {(P1 ∨ P2 ∨ Q2) � Q1}

E34
de f= {(P1 ∨ P2 ∨ Q2 ∨ Q1) � R}

By way of informal proof it suffices to observe that PP-
SF2 is basically the superposition of two PP-SF1 proofs, the
hypotheses being instantiated exactly in Sect. 5.3. We have
proved the correctness of this construction in Sect. 2.1 and
we understand the role of the string fairness in this example.

EVENT stabilize1
REFINES preElection2
WHEN

grd2 : done = FALSE
grd30 : stable = FALSE
grd31 : s−1[{L}] = ∅

THEN

act2 : s, stable : |
⎛

⎝

s′ ∈ C → S
∧s′−1[{L}] �= ∅

∧stable′ = T RUE

⎞

⎠

act30 : oracle := T RUE
END

EVENT stabilize2
REFINES preElection2
WHEN

grd2 : done = FALSE
grd30 : stable = FALSE
grd31 : s−1[{L}] �= ∅

THEN

act2 : s, stable : |
⎛

⎝

s′ ∈ C → S
∧s′−1[{L}] �= ∅

∧stable′ = T RUE

⎞

⎠

act30 : oracle := T RUE
END

EVENT stabilize3
REFINES nondet2
WHEN

grd30 : done = FALSE
grd31 : stable = FALSE
grd32 : s−1[{L}] = ∅

THEN
act2 :

s, stable, oracle : |

⎛

⎜

⎜

⎝

s′ ∈ C → S
∧s′−1[{L}] = ∅

∧stable′ = T RUE
∧oracle′ = FALSE

⎞

⎟

⎟

⎠

END
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EVENT preStabilize
REFINES nondet2
WHEN

grd30 : done = FALSE
grd31 : stable = FALSE
grd32 : s−1[{L}] = ∅

THEN

act2s, stable, oracle : |

⎛

⎜

⎜

⎝

s′ ∈ C → S
∧s′−1[{L}] �= ∅

∧stable′ = FALSE
∧oracle′ ∈ BOOL

⎞

⎟

⎟

⎠

END
EVENT preElection3

REFINES preElection2 WHEN
grd2 : done = FALSE
grd30 : stable = T RUE
grd31 : s−1[{L}] = ∅

grd32 : oracle = FALSE
THEN

act2 : s, stable : |
⎛

⎝

s′ ∈ C → S
∧s′−1[{L}] �= ∅

∧stable′ = T RUE

⎞

⎠

act30 : oracle := T RUE
END

The current model is still a very abstract description of
the system and we still need to introduce the protocol rules
of computation. The next two refinements refine the event
nondet by these rules of computation. Note that the event
nondet is always observable but for simplicity, is not com-
pletely included in Fig. 15. It may require strong fairness.

5.5 Adding protocol rules 2 and 3 (SEL4)

The algorithm of Fischer and Jiang [37] is described by the
three following rules. A configuration is defined locally by
the state of the node (L or N) and by the oracle value (T or
F). 
 denotes a don’t-care value:

– rule 1: ((L , 
), (L , 
)) −→ ((L), (N )): when two
leaders interact, then one of the two leaders becomes a
non-leader

– rule 2: ((N , F), (N , 
)) −→ ((L), (N )): when two
non-leaders interact in a configuration where one sees a
False oracle, then that non-leader becomes a leader

– rule 3: ((N , T ), (N , 
)) −→ ((N ), (N )): when two
non-leaders interact in a configuration where one sees a
True oracle, then no change occurs

INVARIANTS
inv41 : l ⊆ C
inv42 : n ⊆ C
inv43 : l ∩ n = ∅

inv44 : l ∪ n = C
inv45 : l = s−1[{L}]
inv46 : n = s−1[{N }]

Two new variables are introduced in this
refinement, i.e. n and l which state that
a node i is either N (i ∈ n) or L (i ∈
l). They are useful for introducing local
events and rules of computation [37].
We introduce rule 2, which reduces the
variant n, the number of non-leaders. We
also introduce rule 3, which skips.

The events of the new model can be classified into two
groups:

– The first group is a set of events which model the reac-
tion of the network when the environment changes:
either stabilising the system (events stabilize1–3) or
otherwise (event nondet4)

– The second group is the set of events which model the
protocol itself: rules 2 and 3 in their prestabilisation
(rule2PreElection, rule2PreStabilize) as well as sta-
bilised (rule2, rule3) forms

EVENT nondet4 REFINES nondet3
WHEN

grd1 : done = FALSE
THEN

act40 : s, stable, oracle, l, n : |
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

s′ ∈ C → S
∧stable′ ∈ BOOL
∧(stable′ = T RUE ∧ s′−1[{L}] = ∅ ⇒ oracle′ = FALSE)

∧(stable′ = T RUE ∧ s′−1[{L}] �= ∅ ⇒ oracle′ = T RUE)

∧l′ ⊆ C ∧ n′ ⊆ C
∧l′ ∩ n′ = ∅ ∧ l′ ∪ n′ = C
∧l′ = s′−1[{L}] ∧ n′ = s′−1[{N }]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

END
EVENT stabilize1 REFINES stabilize1

WHEN
grd1 : done = FALSE
grd2 : stable = FALSE
grd3 : s−1[{L}] = ∅

THEN

act1 : s, l, n : |

⎛

⎜

⎜

⎜

⎜

⎝

s′ ∈ C → S
∧l′ ⊆ C ∧ n′ ⊆ C
∧l′ ∩ n′ = ∅ ∧ l′ ∪ n′ = C
∧l ′ = s′−1[{L}] ∧ n′ = s′−1[{N }]
∧s′−1[{L}] �= ∅

⎞

⎟

⎟

⎟

⎟

⎠

act2 : stable := T RUE
act3 : oracle := T RUE

END

EVENT stabilize2 REFINES stabilize2
WHEN

grd1 : done = FALSE
grd2 : stable = FALSE
grd3 : s−1[{L}] �= ∅

THEN

act1 : s, l, n : |

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

s′ ∈ C → S
∧l′ ⊆ C ∧ n′ ⊆ C
∧l′ ∩ n′ = ∅

∧l′ ∪ n′ = C
∧l′ = s′−1[{L}]
∧n′ = s′−1[{N }
] ∧ s′−1[{L}] �= ∅

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

act2 : stable := T RUE
act3 : oracle := T RUE

END
EVENT stabilize3 REFINES stabilize3

WHEN
grd30 : done = FALSE
grd31 : stable = FALSE
grd32 : s−1[{L}] = ∅

THEN
act1 : stable := T RUE
act2 : oracle := FALSE

END
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EVENT rule2 REFINES nondet3
ANY
i, j

WHERE
grd1 : stable = FALSE
grd2 : s−1[{L}] �= ∅

grd3 : done = FALSE
grd4 : oracle = FALSE
grd5 : i ∈ n ∧ j ∈ n
grd7 : i �= j

THEN
act1 : l := l ∪ {i}
act2 : n := n \ {i}
act3 : s(i) := L
act4 : oracle :∈ BOOL

END
EVENT rule2preElec REFINES preElection

ANY
i, j

WHERE
grd1 : stable = T RUE
grd2 : s−1[{L}] = ∅

grd3 : done = FALSE
grd4 : oracle = FALSE
grd5 : i ∈ n ∧ j ∈ n
grd6 : i �= j

THEN
act1 : l := l ∪ {i}
act2 : n := n \ {i}
act3 : s(i) := L
act4 : oracle := T RUE

END

EVENT rule2preStab REFINES preStabilize
ANY
i, j

WHERE
grd1 : stable = FALSE
grd2 : s−1[{L}] = ∅

grd3 : done = FALSE
grd4 : oracle = FALSE
grd5 : i ∈ n ∧ j ∈ n
grd7 : i �= j

THEN
act1 : l := l ∪ {i}
act2 : n := n \ {i}
act3 : s(i) := L
act4 : oracle :∈ BOOL

END
EVENT rule3
ANY
i, j

WHERE
grd1 : done = FALSE
grd2 : oracle = T RUE
grd5 :: i ∈ n ∧ j ∈ n
grd5 : i �= j

THEN
skip

END

The remaining rule to introduce in the next refinement
is rule 1. We keep nondet in our current model; next we
can refine it to identify completely what are the rules of the
protocol and what are the assumptions over the environment.
The reader will notice that rule 3 is not very useful but it was
part of the set of rules by Fischer and Jiang [37]. For this
refinement, we keep the same fairness assumptions and we
simply modify the names of the new events. For instance,
rule 2 is under strong fairness (Fig. 16).

5.6 Deriving rules (SEL5)

The final refinement introduces the third and final rule of
the protocol, i.e. rule 1, as a refinement of nondet4. The
fairness assumption over this new event rule1 is simply
WF (rule1). We retain the nondeterminism of the pre-stable
system phase in this model, but at last ensure that the
state ¬ done, stable, oracle, ldr represents a stable net-
work and oracle, with a leader, that now allows election
to proceed by the rules. This is done by giving an alterna-
tive refinement nondet5 of nondet4, which adds the guard
¬ stable ∨ ¬ oracle ∨ ¬ ldr . The final refinement of elec-
tion, election5, simply observes that a single leader remains,
and is thus elected (Fig. 17).

EVENT rule1 REFINES nondet
ANY
i, j

WHERE
grd41 : done = FALSE
grd0 : i ∈ C
grd2 : j ∈ C
grd3 : i �= j
grd4 : i ∈ l
grd5 : j ∈ l

THEN
act1 : l := l \ { j}
act2 : n := n ∪ { j}
act3 : s( j) := N

END

EVENT election5 REFINES election4
ANY

c, ns
WHERE

grd40 : n = {c}
grd41 : l = C \ {c}
grd50 : done = FALSE
grd51 : oracle = T RUE
grd56 : s(c) = L

THEN
act2 : done := T RUE

END

6 Conclusion

We have proposed a method integrating temporal and first-
order logic, proof and tools for modelling and verification of
liveness as well as safety properties, emphasising fairness-
based reasoning. We thus integrate and exploit the best
of two complementary technologies, Event-B/RODIN [4,6]
and TLA [51]. We have performed Event-B developments
for three example population protocols and fully discharged
the usual first-order POs in the RODIN toolkit. We cannot
directly prove—or even specify, for that matter—liveness
and convergence properties for these protocols in the first-
order formal language Event-B. Thus we have shown how
we interpret the Event-B development in TLA, and then
deploy standard and new proof rules in TLA to prove
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Fig. 16 SEL4: introducing
rules 2, 3

Fig. 17 SEL5: introducing
rule 1

liveness and its refinement. We believe the examples give
sufficient patterns of reasoning for researchers to attempt the
approach on their own examples; see comments below about
plans for tool-supported proof.

We have observed repeating and reusable patterns in the
liveness and liveness refinement proofs and have exploited
this in defining new rules. We observe the close relation-
ship between the liveness proofs for a model, and the LTS
abstraction of that model, such as we see sketched in the
leaders in Sect. 5. The LTS gives a diagrammatic abstraction
of the algorithm, and we note related approaches. Butler’s
atomicity decomposition [28,36] is also a diagrammatic rep-
resentation of the behaviour of the models in an Event-B
development. Inspired by Jackson’s JSD notation [46], these
diagrams lay out sequences, selections and iterations of
events at successive refinement levels. They are an aid to the
modeller and are not related to proof. On the other hand, the
fair objects of [40] proposed object-oriented encapsulation
of, and reasoning about, assemblies of objects with fairness
and liveness properties.

As future work we anticipate the possibility of extend-
ing our proof rules over certain classes of LTS models such
as those in the leaders in Sect. 5. In particular our leaders
model is a standard, simple one of being eventually always
stabilised. A more challenging and realistic scenario would

be an intermittently stabilised system where stable periods
have some guaranteed lower time bound. This would open
up quality-of-service reasoning for self-stabilising systems.

The set of temporal proof rules is semantically complete
in the following sense. When a leadsto property is charac-
terised using a trace semantics, it can be expressed equiv-
alently using a predicate transformer semantics [38,55,61].
We can characterise the set of reachable states leading to
a given assertion Q under fairness assumptions. This WP
is defined using fixed-point characterisations and one can
derive the minimal set of necessary rules. We have added
rules that are often used when proving a liveness property,
like confluence and transitivity.

We have mentioned that Event-B is not concerned with
fairness or scheduling specification. Heuristics are employed
with flags and counters to control the enablement and
sequencing of events. This can be seen as constraining the
choices of the (unspecified) scheduler. Event-B implicitly
makes a fairness assumption on each event: if always, or
infinitely often enabled, an event is assumed to fire infinitely
often. To some extent, this is enforced in refinement by the
VARIANTmechanism: every new event in a refinement step
must reduce a natural- or set-valued variant expression. Thus
the new event is eventually disabled until a refined event
adjusts the variables constituting the variant expression. The
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variant also thus provides an implicit LATTICE induction
rule.

We believe an advantage of our approach is that mak-
ing fairness and liveness first-class citizens in the method
will make the design of scheduling more systematic and
perhaps, through identification of patterns, automatable. We
have seen that existing practice in state-based formal meth-
ods is to use heuristics and experience to manipulate event
enablement in order to meet scheduling and liveness require-
ments. This is expensive in skills terms and does not make
for easily verifiable solutions. A comment of J.-R. Abrial
on the lights example is illustrative: “the ONLY important
thing lies in the relationship between angel and iact. Once
the angel has established a new connection between two
(red) nodes then one must be sure that the controller (that
is iact) has enough time to treat this new connection by
removing one node. It seems to me that it is the key of
this algorithm. In fact, it is a very frequent situation: the
environment should not behave too quickly in comparison
to the controller” [5]. This standard approach [29] to mod-
elling control problems involves disabling a sensor event
after reading environment data until the control action is
completed. This engineering judgement—that the partial,
approximate view the controller has of the environment is
sufficiently accurate and safe—is left hidden in the develop-
ment.

Our approach makes explicit the fairness assumptions
and assertions at all refinement levels, so that in principle
concrete scheduling design can be undertaken at a suitable
level and verified to satisfy device fairness requirements.
We believe this is particularly important for contempo-
rary distributed systems such as MANET/WSN, a brave
new world of low-energy and energy-harvesting computa-
tion [49]. Schedulability of processes/processors becomes
more difficult, and explicit reasoning and design of schedul-
ing to achieve liveness goals under fairness assumptions are
required.

An immediate task is the automation of the paper-based
temporal proofs by application of the emerging TLA proof
tool TLAPS [34]. The bigger question is to what extent we
can subcontract the first-order steps in a temporal proof to
RODIN, and what trade-off cost that imposes on freedom of
Event-B modelling. In particular, we will consider whether
the more elaborate GF reasoning may be collapsible to FO,
and tractable to RODIN.

Having demonstrated the utility of Event-B modelling
with TLA reasoning for simple algorithms, next steps are
to tackle (i) the extended population protocol models of
Sect. 1 and even more challenging (ii) a real WSN/MANET
algorithm. Two interesting application candidates are data
aggregation [63] and localisation [66]. Aggregation is con-
cerned with reducing data traffic either by averaging sensor
data on a regional basis or by simply packing readings into

larger messages. This includes notions of routing from data
source to sink. In localisation, each node must dynamically
identify neighbours to whom it is connected.

Appendix: Proof—D = L⊕O⊕U � D = L⊕U—
by GF1

Proving liveness properties requires to integrate fairness
assumptions in the reasoning. We are presenting a proof of
the following properties:

For any i and j satisfying i + j = n:

Spec � (D = L ⊕ 0i ⊕ 1 j ) � (D = L ⊕ 1n).

The expression L means that there is at least one leader.
We assume that the specification of the system is defined

by Spec
de f= I ni t ∧ �[N ]h ∧ GFdh . h is the list of state

variables. N is the disjunction DancingFU∨DancingLO∨
DancingOU∨Dancing. n is the cardinality of O∪U where
O and U are the initial sets of 0s and 1s.

Recall that GFdh is the fairness assumption defined by:

GFdh
de f= ∀i, j · i, j ∈ 1..n ∧ i + j = card(O ∪U ) = n

⇒ GFh(D = L ⊕ 0i ⊕ 1 j ,DancingLO,

D = L ⊕ 0i−1 ⊕ 1 j+1)

It is clear that, without this assumption, the execution
may loop in configurations avoiding the configuration with-
out 0s. We consider that this property is stating the general
fairness constraint of the population protocols.

PROOF: The proof is decomposed into steps.
1. Spec � (D = L ⊕ 0n) � (D = L ⊕ 0n−1 ⊕ 1)

PROOF:
1.1. Spec � (D = L ⊕ 0n) ∧ [N ]h ⇒ (D = L ⊕ 0n) ∨

(D = L ⊕ 0n−1 ⊕ 1)
PROOF:
DancingFU and Dancing are not enabled, since F
is empty. DancingLO may add a ONE and delete
one ZERO. DancingOU is not enabled, since there
is no 1. Only DancingLO is observed in the current
configuration. 
�

1.2. Spec � (D = L⊕0n)∧〈N∧DancingLO〉h⇒(D =
L ⊕ 0n−1 ⊕ 1)
PROOF: DancingLO adds a ONE and deletes one
ZERO. 
�

1.3. �[N ]h ∧GFdh ⇒((D = L⊕0n) � (D = L⊕0n))
PROOF: Tautology 
�

1.4. Q.E.D.
PROOF: By GF1 rule, 1.1, 1.2 and 1.3, we conclude
Spec � (D = L ⊕ 0n) � (D = L ⊕ 0n−1 ⊕ 1) 
�
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2. ASSUME: ∀a ∈ {0..i}.Spec ⇒ (D = L ⊕ 0n−a1a) �
(D = L ⊕ 0n−a−1 ⊕ 1a+1)

PROVE: Spec � (D = L ⊕ 0n−(i+1)1i+1) � (D =
L ⊕ 0n−(i+2) ⊕ 1i+2)

PROOF: The proof applies the GF1 rule with the follow-
ing predicates:

– A is ∃a.a ∈ {0..i} ∧ (D = L ⊕ 0n−a1a)
– B is (D = L ⊕ 0n−(i+1)1i+1)

– C is (D = L ⊕ 0n−(i+2)1i+2)

2.1. Spec � (D = L ⊕ 0n−(i+1)1i+1) ∧ [N ]h ⇒ (D =
L ⊕ 0n−(i+1)1i+1) ∨ (D = L ⊕ 0n−(i+2) ⊕ 1i+2) ∨
(∃a.a ∈ {0..i} ∧ (D = L ⊕ 0n−a1a)

)

PROOF: DancingFU and Dancing are not enabled,
since F is empty. DancingLO may add a ONE and
delete one ZERO and DancingOU may add one
ZERO and delete one ONE. 
�

2.2. Spec � (D = L ⊕ 0n−(i+1)1i+1) ∧ 〈N ∧
DancingLO〉h ⇒ (D = L ⊕ 0n−(i+2) ⊕ 1i+2

PROOF: DancingLO adds a ONE and deletes one
ZERO. 
�

2.3. �[N ]h ∧ GFdh ⇒ (∃a.a ∈ {0..i}(D = L ⊕
0n−a1a)) � D = L ⊕ 0n−(i+1)1i+1))

PROOF:
2.3.1. �[N ]h ∧ GFdh ⇒ (D = L ⊕ 0n−i ) ⊕ 1i �

(D = L ⊕ 0n−(i+1)1i+1))

PROOF: By assumption, we can choose a = i
and we obtain Spec � (D = L⊕0n−i)1i ) �
(D = L ⊕ 0n−(i+1) ⊕ 1i+1). 
�

2.3.2. �[N ]h ∧ GFdh ⇒ (D = L ⊕ 0n−(i−1)) �
(D = L ⊕ 0n−(i+1)1i+1))

PROOF: By assumption, we can choose a =
i − 1 and we derive that Spec � (D =
L ⊕ 0n−(i−1)1i−1) � (D = L ⊕ 0n−i) ⊕
1i ) and, by step 2.3.1, �[N ]h ∧ GFdh ⇒
(D = L ⊕ 0n−(i−1) ⊕ 1i−1) � (D =
L ⊕ 0n−(i+1)1i+1)). The two properties are
combined by the transitivity rule to obtain:
Spec � (D = L ⊕ 0n−(i−1)1i−1) � (D =
L ⊕ 0n−(i+1)1i+1)). 
�

2.3.3. ∀a.a ∈ {0..i}.�[N ]h ∧ GFdh ⇒ (D = L ⊕
0n−a1a)) � D = L ⊕ 0n−(i+1)1i+1))

PROOF: By steps 2.3.1, 2.3.2, the property
for each a holds. 
�

2.3.4. Q.E.D.
PROOF: The � operator is satisfying the rule
of confluence: if P1 � Q, P2 � Q, . . . ,
Pk � Q, then (∃l.l ∈ 1..k ∧ Pl) � Q,
By step 2.3.3 and the confluence rule of �,
we obtain that �[N ]h ∧ GFdh ⇒ (∃a.a ∈
{0..i}(D = L ⊕ 0n−a1a)) � D = L ⊕
0n−(i+1)1i+1)) 
�

2.4. Spec ⇒ GF((D = L ⊕ 0n−(i+1) ⊕ 1i+1),

DancingLO, (D = L ⊕ 0n−(i+2) ⊕ 1i+2))

PROOF: By definition of the specification of the
model and especially GFdh . 
�

2.5. Q.E.D.
PROOF: By GF1 rule with 2.1, 2.2,2.3,2.4, we con-
clude Spec � (D = L ⊕ 0n−(i+1)1i+1) � (D =
L ⊕ 0n−(i+2) ⊕ 1i+2). 
�


�
3. ∀a ∈ 0..n − 1.Spec ⇒ (D = L ⊕ 0n−a1a) � (D =

L ⊕ 0n−(a+1) ⊕ 1a+1)

PROOF: By the two steps 1 and 2, we derive the property.

�

4. ∀a ∈ 0..n − 1.Spec ⇒ (D = L ⊕ 0n−a1a) � (D =
L ⊕ 1n)
PROOF: By the step 3, and by the transitivity of � prop-
erties, one derives that
Spec � (D = L ⊕ 0n−a1a) � (D = L ⊕ 1n) 
�

5. Q.E.D.
PROOF: By 3, 4 and by the transitivity of the �, we
derive that ∀a ∈ 0..n−1.Spec⇒(D = L⊕0n−a⊕1a) �
(D = L ⊕ 0n−(a+1) ⊕ 1a+1). If we consider the property
(D = L ⊕ 0i ⊕ 1 j for two values i and j satisfying
i + j = n, one can apply for a = j , the previous prop-
erty and obtain that Spec � (D = L ⊕ 0i ⊕ 1 j ) � (D =
L ⊕ 0i−1) ⊕ 1 j+1) and if we reapply for a = j + 1, we
obtain that Spec � (D = L ⊕ 0i−1 ⊕ 1 j+1) � (D =
L ⊕ 0i−2) ⊕ 1 j+2) and after a finite number k of applica-
tions, we derive Spec � (D = L ⊕ 0i−1 ⊕ 1 j+k−1) �
(D = L ⊕ 0i−k) ⊕ 1 j+k) such that j + k = n. By the
transitivity rule of leadsto, we obtain that Spec � (D =
L ⊕ 0i ⊕ 1 j ) � (x1n). 
�
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